【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜邊AC,交AB于D,E是垂足,連接CD.若BD=1,則AC的長是( )
A.2
B.2
C.4
D.4
【答案】A
【解析】解:∵在Rt△ABC中,∠B=90°,∠A=30°,
∴∠ACB=60°,
∵DE垂直平分斜邊AC,
∴AD=CD,
∴∠ACD=∠A=30°,
∴∠DCB=60°﹣30°=30°,
在Rt△DBC中,∠B=90°,∠DCB=30°,BD=1,
∴CD=2BD=2,
由勾股定理得:BC= = ,
在Rt△ABC中,∠B=90°,∠A=30°,BC= ,
∴AC=2BC=2 ,
故選A.
求出∠ACB,根據(jù)線段垂直平分線的性質(zhì)求出AD=CD,推出∠ACD=∠A=30°,求出∠DCB,即可求出BD、BC,根據(jù)含30°角的直角三角形性質(zhì)求出AC即可.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,DB∥AC,且DB=AC,E是AC的中點,
(1)求證:BC=DE;
(2)連接AD、BE,若要使四邊形DBEA是矩形,則給△ABC添加什么條件,為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】端午節(jié)期間,某校“慈善小組”籌集到1240元善款,全部用于購買水果和粽子,然后到福利院送給老人,決定購買大棗粽子和普通粽子共20盒,剩下的錢用于購買水果,要求購買水果的錢數(shù)不少于180元但不超過240元.已知大棗粽子比普通粽子每盒貴15元,若用300元恰好可以買到2盒大棗粽子和4盒普通粽子.
(1)請求出兩種口味的粽子每盒的價格;
(2)設買大棗粽子x盒,買水果共用了w元. ①請求出w關于x的函數(shù)關系式;
②求出購買兩種粽子的可能方案,并說明哪一種方案使購買水果的錢數(shù)最多.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABD中,∠BDA=90°,AD=BD,點E在AD上,連接BE,將△BED繞點D順時針旋轉(zhuǎn)90°,得到△ACD,若∠BED=65°,則∠ACE的度數(shù)為( )
A.15°
B.20°
C.25°
D.30°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列從左邊到右邊的變形,是因式分解的是( )
A.(3-x)(3+x)=9-x2B.(y+1)(y-3)=-(3-y)(y+1)
C.4yz-2y2z+z=2y(2z-yz)+zD.-8x2+8x-2=-2(2x-1)2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校開展“我最喜愛的一項體育活動”調(diào)查,要求每名學生必選且只能選一項,現(xiàn)隨機抽查了m名學生,并將其結果繪制成如下不完整的條形圖和扇形圖.
請結合以上信息解答下列問題:
(1)m= ;
(2)請補全上面的條形統(tǒng)計圖;
(3)在圖2中,“乒乓球”所對應扇形的圓心角的度數(shù)為 ;
(4)已知該校共有1200名學生,請你估計該校約有 名學生最喜愛足球活動.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各式中,能用平方差公式計算的是( )
A.(x+y)(-x-y)B.(-x+y)(-x-y)C.(x-y)(-x+y)D.(x-y)2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com