【題目】如圖1,在RtABC中,∠ACB90°,ACBC,分別以ABBC,CA為一邊向△ABC外作正方形ABDEBCMN,CAFG,連接EFGM、ND,設(shè)△AEF、△BND、△CGM的面積分別為S1、S2、S3

1)猜想S1S2、S3的大小關(guān)系.

2)請對(1)的猜想,任選一個關(guān)系進(jìn)行證明;

3)若將圖1中的RtABC改為圖2中的任意△ABC,若SABC5,求出S1+S2+S3的值;

4)若將圖2中的任意△ABC改為任意凸四邊形ABCD,若SAEG+SCNK+SIBH+SDFMα,則四邊形ABCD的面積為   (直接用含α的代數(shù)式表示結(jié)果)

【答案】(1)S1S2S3(2)見解析(3)15(4)a

【解析】

1)猜想三個三角形面積相等;
2)證明三個三角形都與△ABC面積相等.觀察圖形,要證明面積相等,圖中正方形提供了一組相等的邊作為底,只要證明高相等即可;
3)證明思路同(2),S1、S2、S3面積都等于△ABC問題可求;
4)作四邊形ABCD對角線,可以以利用(3)中結(jié)論,△AEG、△CNK、△IBH、△DFM的面積可以分別于四邊形ABCD被對角線分割所得的三角形對應(yīng)相等,則問題可證.

1)猜想:S1S2S3

2)如圖1,延長FA,過點(diǎn)EEH⊥FAH,

由已知:∠BAE∠CAH90°,

∴∠CAB∠HAE.

∵∠ACB∠AHE90°AEAB,

∴△HAE≌△CAB,

∴EHBC

∴SAEFSABC,

S1SABC

同理:S2SABC,S3SABC,

∴S1S2S3

3)如圖2

分別過點(diǎn)GAGQ⊥MCQ,AP⊥BCP,

由已知:∠GCA∠QCB90°,

∴∠GCQ∠ACP.

∵∠GQC∠APC90°,

GCAC

∴△GCQ≌△ACP,

∴GQAP

∵SGCM,

SABC,

MCBC,

∴SGCMSABC,

∴S3SABC,

同理:S1SABC

S2SABC,

∴S1S2S3SABC

∵SABC5,

∴S1+S2+S315

4)如圖3,連AC

由(3)可知,SDFMSADC,

SIBHSABC

∴SDFM+SIBHSADC+SABCS四邊形ABCD,

同理:SAEG+SCNKS四邊形ABCD

∴SAEG+SCNK+SIBH+SDFM2S四邊形ABCD,

∵SAEG+SCNK+SIBH+SDFMα,

∴2S四邊形ABCDα,

四邊形ABCD的面積為

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某青春黨支部在精準(zhǔn)扶貧活動中,給結(jié)對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.

(1)求甲、乙兩種樹苗每棵的價格各是多少元?

(2)在實(shí)際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費(fèi)用不超過1500元,那么他們最多可購買多少棵乙種樹苗?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,點(diǎn)O在△ABCBC邊上,⊙O經(jīng)過點(diǎn)A、C,且與BC相交于點(diǎn) D.點(diǎn)E是下半圓弧的中點(diǎn),連接AEBC于點(diǎn)F,已知ABBF

1)求證:AB是⊙O的切線;

2)若OC3,OF1,求cosB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】418日,一年一度的風(fēng)箏節(jié)活動在市政廣場舉行,如圖,廣場上有一風(fēng)箏A,小江抓著風(fēng)箏線的一端站在D處,他從牽引端E測得風(fēng)箏A的仰角為67°,同一時刻小蕓在附近一座距地面30米高(BC30)的居民樓頂B處測得風(fēng)箏A的仰角是45°,已知小江與居民樓的距離CD40米,牽引端距地面高度DE1.5米,根據(jù)以上條件計算風(fēng)箏距地面的高度(結(jié)果精確到0.1米,參考數(shù)據(jù):sin67°≈,cos67°≈,tan67°≈≈1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y2x+2y軸交于A點(diǎn),與反比例函數(shù)yx0)的圖象交于點(diǎn)M,過MMHx軸于點(diǎn)H,且tanAHO2

1)求H點(diǎn)的坐標(biāo)及k的值;

2)點(diǎn)Py軸上,使△AMP是以AM為腰的等腰三角形,請直接寫出所有滿足條件的P點(diǎn)坐標(biāo);

3)點(diǎn)Na,1)是反比例函數(shù)yx0)圖象上的點(diǎn),點(diǎn)Qm0)是x軸上的動點(diǎn),當(dāng)△MNQ的面積為3時,請求出所有滿足條件的m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點(diǎn)EF分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點(diǎn)G,CE的延長線交DA的延長線于點(diǎn)H,連接ACEF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)線段AC,AG,AH什么關(guān)系?請說明理由;

(3)設(shè)AEm,

①△AGH的面積S有變化嗎?如果變化.請求出Sm的函數(shù)關(guān)系式;如果不變化,請求出定值.

②請直接寫出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張老師為了了解班級學(xué)生完成數(shù)學(xué)課前預(yù)習(xí)的具體情況,對本班部分學(xué)生進(jìn)行了為期半個月的跟蹤調(diào)查.他將調(diào)查結(jié)果分為四類:A:很好;B:較好;C:一般;D:較差,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:

(1)請計算出A類男生和C類女生的人數(shù),并將條形統(tǒng)計圖補(bǔ)充完整.

(2)為了共同進(jìn)步,張老師想從被調(diào)查的A類和D類學(xué)生中各隨機(jī)機(jī)抽取一位同學(xué)進(jìn)行一幫一互助學(xué)習(xí),請用畫樹狀圖或列表的方法求出所選兩位同學(xué)恰好是一男一女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】是⊙O直徑,在的異側(cè)分別有定點(diǎn)和動點(diǎn),如圖所示,點(diǎn)在半圓弧 上運(yùn)動(不與、重合),過的垂線,交的延長線于,已知,

1)求證:··;

2)當(dāng)點(diǎn)運(yùn)動到弧的中點(diǎn)時,求的長;

3)當(dāng)點(diǎn)運(yùn)動到什么位置時,的面積最大?請直接寫出這個最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直角頂點(diǎn)P在第四象限,頂點(diǎn)A、B分別落在反比例函數(shù)圖象的兩支上,且軸于點(diǎn)C,軸于點(diǎn)DAB分別與x軸,y軸相交于點(diǎn)F已知點(diǎn)B的坐標(biāo)為

填空:______

證明:;

當(dāng)四邊形ABCD的面積和的面積相等時,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案