分析 (1)根據(jù)折疊的性質(zhì)得OA=OC,EF⊥AC,EA=EC,再利用AD∥AC得到∠FAC=∠ECA,則可根據(jù)“ASA”判斷△AOF≌△COE,得到OF=OE,加上OA=OC,AC⊥EF,于是可根據(jù)菱形的判定方法得到四邊形AECF為菱形;
(2)①設(shè)菱形的邊長(zhǎng)為x,則BE=BC-CE=8-x,AE=x,在Rt△ABE中,根據(jù)勾股定理得(8-x)2+42=x2,然后解方程即可得到菱形的邊長(zhǎng);
②先在Rt△ABC中,利用勾股定理計(jì)算出AC=4$\sqrt{5}$,則OA=$\frac{1}{2}$AC=2$\sqrt{5}$,然后在Rt△AOE中,利用勾股定理計(jì)算出OE=$\sqrt{5}$,所以EF=2OE=2$\sqrt{5}$.
解答 證明:(1)∵矩形ABCD折疊使A,C重合,折痕為EF,
∴OA=OC,EF⊥AC,EA=EC,
∵AD∥AC,
∴∠FAC=∠ECA,在△AOF和△COE中,
$\left\{\begin{array}{l}{∠FAO=∠ECO}\\{AO=CO}\\{∠AOF=COE}\end{array}\right.$
∴△AOF≌△COE,
∴OF=OE,
∵OA=OC,AC⊥EF,
∴四邊形AECF為菱形;
(2)①設(shè)菱形的邊長(zhǎng)為x,則BE=BC-CE=8-x,AE=x,
在Rt△ABE中,∵BE2+AB2=AE2,
∴(8-x)2+42=x2,解得x=5,
即菱形的邊長(zhǎng)為5;
②在Rt△ABC中,AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=4$\sqrt{5}$,
∴OA=$\frac{1}{2}$AC=2$\sqrt{5}$,
在Rt△AOE中,AE=5,
OE=$\sqrt{A{E}^{2}-A{O}^{2}}$=$\sqrt{5}$,
∴EF=2OE=2$\sqrt{5}$.
點(diǎn)評(píng) 此題是折疊問(wèn)題,主要考查了折疊的性質(zhì),全等三角形的判定和性質(zhì),菱形的判定和性質(zhì),勾股定理,判斷出四邊形AECF為菱形和求出菱形的邊長(zhǎng)是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 了解浙江省中學(xué)生的視力情況 | |
B. | 了解九(1)班學(xué)生校服的尺碼情況 | |
C. | 檢測(cè)一批節(jié)能燈的使用壽命 | |
D. | 調(diào)查湖州《阿奇講事體》欄目的收視率 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=-1}\\{y=1}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=0}\\{y=-\frac{1}{5}}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=-2}\\{y=0}\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 平均數(shù) | B. | 中位數(shù) | C. | 眾數(shù) | D. | 方差 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com