【題目】如圖,菱形EFGH的三個(gè)頂點(diǎn)E、G、H分別在正方形ABCD的邊AB、CD、DA上,連接CF.
(1)求證:∠HEA=∠CGF;
(2)當(dāng)AH=DG時(shí),求證:菱形EFGH為正方形.
【答案】詳見解析
【解析】
試題分析:(1)連接GE,根據(jù)正方形的性質(zhì)和平行線的性質(zhì)得到∠AEG=∠CGE,根據(jù)菱形的性質(zhì)和平行線的性質(zhì)得到∠HEG=∠FGE,解答即可;
(2)證明Rt△HAE≌Rt△GDH,得到∠AHE=∠DGH,證明∠GHE=90°,根據(jù)正方形的判定定理證明.
證明:(1)連接GE,
∵AB∥CD,
∴∠AEG=∠CGE,
∵GF∥HE,
∴∠HEG=∠FGE,
∴∠HEA=∠CGF;
(2)∵四邊形ABCD是正方形,
∴∠D=∠A=90°,
∵四邊形EFGH是菱形,
∴HG=HE,
在Rt△HAE和Rt△GDH中,
,
∴Rt△HAE≌Rt△GDH(HL),
∴∠AHE=∠DGH,又∠DHG+∠DGH=90°,
∴∠DHG+∠AHE=90°,
∴∠GHE=90°,
∴菱形EFGH為正方形;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)出發(fā),向左移動(dòng)3個(gè)單位再向右移動(dòng)2個(gè)單位到達(dá)點(diǎn)P,點(diǎn)P表示的數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知樣本數(shù)據(jù)x1 , x2 , x3 , …,xn的方差為4,則數(shù)據(jù)2x1+3,2x2+3,2x3+3,…,2xn+3的方差為( )
A.11
B.9
C.16
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
①1是絕對(duì)值最小的數(shù);
②0既不是正數(shù),也不是負(fù)數(shù);
③一個(gè)有理數(shù)不是整數(shù)就是分?jǐn)?shù);
④0的絕對(duì)值是0.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:EF∥AD,∠1=∠2,∠BAC=75°.將求∠AGD的過程填寫完整.
解:∵EF∥AD (已知)
∴∠2= ( )
又∵∠1=∠2 (已知)∴∠1=∠3( )
∴AB∥ ( )
∴∠BAC+ =180°( )
∵∠BAC=75°(已知)
∴∠AGD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)P在BA的延長(zhǎng)線上,PD切⊙O于點(diǎn)D,過點(diǎn)B作BE垂直于PD,交PD的延長(zhǎng)線于點(diǎn)C,連接AD并延長(zhǎng),交BE于點(diǎn)E。
(1)求證:AB=BE;
(2)若PA=2 ,cosB=,求⊙O半徑的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若兩個(gè)數(shù)的和為正數(shù),則這兩個(gè)數(shù)( )
A. 至少有一個(gè)為正數(shù) B. 只有一個(gè)是正數(shù)
C. 有一個(gè)必為零 D. 都是正數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com