【題目】如圖,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE.
(1)求證:△ACD≌△CBE.
(2)若AD=6.8,DE=4.5,求BE的長(zhǎng)度
【答案】(1)見(jiàn)解析;(2)2.3.
【解析】
(1)求出∠E=∠ADC=∠ACB=90°,∠CAD=∠BCE,根據(jù)AAS推出即可;
(2)根據(jù)全等三角形的性質(zhì)求出CE=AD=6.8,BE=CD,即可得出答案.
(1)證明:∵∠ACB=90°,BE⊥CE,AD⊥CE,
∴∠E=∠ADC=∠ACB=90°,
∴∠BCE+∠ACD=90°,∠ACD+∠CAD=90°,
∴∠CAD=∠BCE,
在△ADC和△CEB中
∴△ADC≌△CEB(AAS);
(2)解:∵△ADC≌△CEB,AD=6.8,
∴CE=AD=6.8,BE=CD,
∵DE=4.5,
∴BE=CD=CEDE=6.84.5=2.3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,點(diǎn)O是等邊三角形ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=α, 以OC為邊作等邊三角形OCD,連接AD.
(1)當(dāng)α=150°時(shí),試判斷△AOD的形狀,并說(shuō)明理由;
(2)探究:當(dāng)a為多少度時(shí),△AOD是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=16cm,BC=6cm,點(diǎn)P從點(diǎn)A出發(fā)沿AB向點(diǎn)B移動(dòng)(不與點(diǎn)A、B重合),一直到達(dá)點(diǎn)B為止;同時(shí),點(diǎn)Q從點(diǎn)C出發(fā)沿CD向點(diǎn)D移動(dòng)(不與點(diǎn)C、D重合).運(yùn)動(dòng)時(shí)間設(shè)為t秒.
(1)若點(diǎn)P、Q均以3cm/s的速度移動(dòng),則:AP= cm;QC= cm.(用含t的代數(shù)式表示)
(2)若點(diǎn)P為3cm/s的速度移動(dòng),點(diǎn)Q以2cm/s的速度移動(dòng),經(jīng)過(guò)多長(zhǎng)時(shí)間PD=PQ,使△DPQ為等腰三角形?
(3)若點(diǎn)P、Q均以3cm/s的速度移動(dòng),經(jīng)過(guò)多長(zhǎng)時(shí)間,四邊形BPDQ為菱形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市長(zhǎng)途客運(yùn)站每天6:30—7:30開(kāi)往某縣的三輛班車(chē)票價(jià)相同,但車(chē)的舒適程度不同.小張和小王因事需在這一時(shí)段乘車(chē)去該縣,但不知道三輛車(chē)開(kāi)來(lái)的順序,兩人采用不同的乘車(chē)方案:小張無(wú)論如何決定乘坐開(kāi)來(lái)的第一輛車(chē),而小王則是先觀察后上車(chē),當(dāng)?shù)谝惠v車(chē)開(kāi)來(lái)時(shí),他不上車(chē),而是仔細(xì)觀察車(chē)的舒適狀況.若第二輛車(chē)的狀況比第一輛車(chē)好,他就上第二輛車(chē);若第二輛車(chē)不如第一輛車(chē),他就上第三輛車(chē).若按這三輛車(chē)的舒適程度分為優(yōu)、中、差三等,請(qǐng)你思考并回答下列問(wèn)題:
(1)三輛車(chē)按出現(xiàn)的先后順序共有哪幾種可能?
(2)請(qǐng)列表分析哪種方案乘坐優(yōu)等車(chē)的可能性大?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)O是線段AD的中點(diǎn),分別以AO和DO為邊在線段AD的同側(cè)作等邊三角形OAB和等邊三角形OCD,連接AC和BD,相交于點(diǎn)E,連接BC.
(1)證明:⊿ABC ≌ ⊿DCB;
(2)求∠AEB的大小.
(3)如圖2,△OAB固定不動(dòng),保持△OCD的形狀和大小不變,將△OCD繞點(diǎn)O旋轉(zhuǎn)(△OAB和△OCD不能重疊),求∠AEB的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中,,,將繞點(diǎn)按順時(shí)針旋轉(zhuǎn)得到,連接,,它們交于點(diǎn),
①求證:.
②當(dāng),求的度數(shù).
③當(dāng)四邊形是菱形時(shí),求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,為邊上的中線,過(guò)點(diǎn)作于點(diǎn),過(guò)點(diǎn)作平行線,交的延長(zhǎng)線于點(diǎn),在延長(zhǎng)線上截得,連結(jié)、.若,,則四邊形的面積等于________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,AB∥DE,AC∥DF,AC=DF下列條件中,不能判斷△ABC≌△DEF的是( 。
A. AB=DE B. ∠B=∠E C. EF=BC D. EF∥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,點(diǎn)在邊上,,點(diǎn)是邊上一個(gè)動(dòng)點(diǎn),若周長(zhǎng)的最小值是6,則的長(zhǎng)是( )
A.B.C.D.1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com