【題目】如圖,在△ABC中,∠C=90°,AC=6cm,BC=8cm,點(diǎn)P從點(diǎn)A出發(fā)沿AC以1cm/s的速度向點(diǎn)C移動(dòng),同時(shí)點(diǎn)Q從C點(diǎn)出發(fā)沿CB以2cm/s的速度向點(diǎn)B移動(dòng).當(dāng)Q運(yùn)動(dòng)到B點(diǎn)時(shí),P,Q停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為ts.
(1)t為何值時(shí),△PCQ的面積等于5cm2?
(2)點(diǎn)P、Q在移動(dòng)過(guò)程中,是否存在某一時(shí)刻,使得△PCQ的面積等于△ABC的面積的一半?若存在,求出t的值;若不存在,說(shuō)明理由.
【答案】(1)1;(2)不存在,理由見解析.
【解析】
(1)分別求出CP和CQ的表達(dá)式,再根據(jù)面積等于5列出方程,解方程即可得出答案;
(2)根據(jù)題意求出△ABC的面積,再根據(jù)“△PCQ的面積等于△ABC的面積的一半”列出一元二次方程,利用判別式判斷是否有實(shí)數(shù)解,即可得出答案.
解:(1)由題意得,AP=tcm, CQ=2tcm,則PC=(6﹣t)cm,
∴×2t(6﹣t)=5.
整理,得t2﹣6t+5=0,解得t1=1,t2=5(舍).
即t=1時(shí),△PCQ的面積等于5cm2;
(2)由題意得:S△ABC=×ACBC=×6×8=24,
即:×2t(6﹣t)=×24,
整理的:t2﹣6t+12=0,
∵△=62﹣4×12=﹣12<0,該方程無(wú)實(shí)數(shù)解,
∴不存在某一時(shí)刻,使得△PCQ的面積等于△ABC的面積的一半.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的袋子中有1個(gè)紅球,1個(gè)綠球和n個(gè)白球,這些球除顏色外無(wú)其他差別.
(1)從袋中隨機(jī)摸出一個(gè)球,記錄其顏色,然后放回.大量重復(fù)該實(shí)驗(yàn),發(fā)現(xiàn)摸到綠球的頻率穩(wěn)定于0.25,求n的值;
(2)在該不透明袋子中同時(shí)摸出兩個(gè)球,求摸出的兩個(gè)球顏色不同的概率.(要求列表或畫樹狀圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車租賃公司共有汽車50輛,市場(chǎng)調(diào)查表明,當(dāng)租金為每輛每日200元時(shí)可全部租出,當(dāng)租金每提高10元,租出去的車就減少2輛.
(1)當(dāng)租金提高多少元時(shí),公司的每日收益可達(dá)到10120元?
(2)公司領(lǐng)導(dǎo)希望日收益達(dá)到10200元,你認(rèn)為能否實(shí)現(xiàn)?若能,求出此時(shí)的租金,若不能,請(qǐng)說(shuō)明理由.
(3)汽車日常維護(hù)要一定費(fèi)用,已知外租車輛每日維護(hù)費(fèi)為100元,未租出的車輛維護(hù)費(fèi)為50元,當(dāng)租金為多少元時(shí),公司的利潤(rùn)恰好為5500元?(利潤(rùn)=收益一維護(hù)費(fèi)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線的對(duì)稱軸為,且經(jīng)過(guò)點(diǎn)A(2,1),點(diǎn)是拋物線上的動(dòng)點(diǎn),的橫坐標(biāo)為,過(guò)點(diǎn)作軸,垂足為,交于點(diǎn),點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,連接,,過(guò)點(diǎn)A作AE⊥x軸,垂足為E.則當(dāng)( )時(shí),的周長(zhǎng)最小.
A.1B.1.5C.2D.2.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的半徑為1,△ABC是⊙O的內(nèi)接等邊三角形,點(diǎn)D,E在圓上,四邊形BCDE為矩形,這個(gè)矩形的面積是( )
A. 2 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市新建了圓形文化廣場(chǎng),小杰和小浩準(zhǔn)備不同的方法測(cè)量該廣場(chǎng)的半徑.
(1)小杰先找圓心,再量半徑,請(qǐng)你在圖1中,用尺規(guī)作圖的方法幫小杰找到該廣場(chǎng)的圓心(不寫作法,保留作圖痕跡);
(2)小浩在廣場(chǎng)邊(如圖2)選取、、三根石柱,量得、之間的距離與、之間的距離相等,并測(cè)得長(zhǎng)為240米,到的距離為5米.請(qǐng)你幫他求出廣場(chǎng)的半徑;
(3)請(qǐng)你解決下面的問(wèn)題:如圖3,的直徑為,弦,是弦上的一個(gè)動(dòng)點(diǎn),求出的長(zhǎng)度范圍是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為做好防汛工作,防汛指揮部決定對(duì)某水庫(kù)的水壩進(jìn)行加高加固,專家提供的方案是:水壩加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如圖所示,已知AE=4米,∠EAC=130°,求水壩原來(lái)的高度BC.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,,.
(1)經(jīng)過(guò)A、B、C三點(diǎn)的圓弧所在圓的圓心M的坐標(biāo)為________.
(2)點(diǎn)D坐標(biāo)為,連接CD,判斷直線CD與⊙M的位置關(guān)系并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一只不透明的袋子中,裝有2個(gè)白球,1個(gè)紅球,1個(gè)黃球,這些球除顏色外都相同.請(qǐng)用列表法或畫樹形圖法求下列事件的概率:
(1)攪勻后從中任意摸出1個(gè)球,恰好是白球.
(2)攪勻后從中任意摸出2個(gè)球,2個(gè)都是白球.
(3)再放入幾個(gè)除顏色外都相同的黑球,攪勻后從中任意摸出1個(gè)球,恰好是黑球的概率為,求放入了幾個(gè)黑球?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com