【題目】如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=a.將△BOC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)60°得△ADC,連接OD.
(1)求證:△COD是等邊三角形;
(2)當(dāng)a=150°時(shí),試判斷△AOD的形狀,并說(shuō)明理由;
(3)探究:當(dāng)a為多少度時(shí),△AOD是等腰三角形?
【答案】(1)證明見(jiàn)解析;(2)當(dāng)α=150°時(shí),△AOD是直角三角形,理由見(jiàn)解析;(3)當(dāng)α的度數(shù)為125°或110°或140°時(shí),△AOD是等腰三角形.
【解析】試題分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得出,結(jié)合題意即可證得結(jié)論;
(2)結(jié)合(1)的結(jié)論可作出判斷;
(3)找到變化中的不變量,然后利用旋轉(zhuǎn)及全等的性質(zhì)即可做出解答.
試題解析:(1)證明:∵將△BOC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)得△ADC,
∴CO=CD,∠OCD=,
∴△COD是等邊三角形,
(2)當(dāng)時(shí),△AOD是直角三角形.
理由是:∵將△BOC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)60得△ADC,
∴△BOC≌△ADC,
又∵△COD是等邊三角形,
∴∠ODC=,
∴△AOD不是等腰直角三角形,即△AOD是直角三角形。
(3)①要使AO=AD,需∠AOD=∠ADO,
②要使OA=OD,需∠OAD=∠ADO.
③要使OD=AD,需∠OAD=∠AOD.
解得
綜上所述:當(dāng)α的度數(shù)為或或時(shí),△AOD是等腰三角形。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】朗讀者自開(kāi)播以來(lái),以其厚重的文化底蘊(yùn)和感人的人文情懷,感動(dòng)了數(shù)以億計(jì)的觀眾,岳池縣某中學(xué)開(kāi)展“朗讀”比賽活動(dòng),九年級(jí)、班根據(jù)初賽成績(jī),各選出5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手的復(fù)賽成績(jī)滿分為100分如圖所示.
平均數(shù) | 中位數(shù) | 眾數(shù) | |
九班 | 85 | 85 | |
九班 | 80 |
根據(jù)圖示填寫表格;
結(jié)合兩班復(fù)賽成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)班級(jí)的復(fù)賽成績(jī)較好;
如果規(guī)定成績(jī)較穩(wěn)定班級(jí)勝出,你認(rèn)為哪個(gè)班級(jí)能勝出?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,濕地景區(qū)岸邊有三個(gè)觀景臺(tái)、、.已知m, m,點(diǎn)位于點(diǎn)的南偏西60. 7°方向,點(diǎn)位于點(diǎn)的南偏東66. 1°方向.
(1)求的面積;
(2)景區(qū)規(guī)劃在線段的中點(diǎn)處修建一個(gè)湖心亭,并修建觀景棧道.試求、間的距離.(結(jié)果精確到0. 1 m,參考數(shù)據(jù): , , , , , , )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象過(guò)A(2,0), B(0,﹣1)和C(4,5)三點(diǎn).
(1)求二次函數(shù)的解析式;
(2)設(shè)二次函數(shù)的圖象與x軸的另一個(gè)交點(diǎn)為D,求點(diǎn)D的坐標(biāo);
(3)在同一坐標(biāo)系中畫出直線y=x+1,并寫出當(dāng)x在什么范圍內(nèi)時(shí),一次函數(shù)的值大于二次函數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD中,兩條對(duì)角線AC、BD相交于點(diǎn)O, ∠AOB=60° AB=4cm.則這個(gè)矩形的周長(zhǎng)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=8,BC=6。P是AB邊上的一個(gè)動(dòng)點(diǎn)(異于A、B兩點(diǎn)),過(guò)點(diǎn)P分別作AC、BC邊的垂線,垂足為M、N設(shè)AP=x。
(1)在△ABC中,AB= ;
(2)當(dāng)x= 時(shí),矩形PMCN的周長(zhǎng)是14;
(3)是否存在x的值,使得△PAM的面積、△PBN的面積與矩形PMCN的面積同時(shí)相等?請(qǐng)說(shuō)出你的判斷,并加以說(shuō)明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線AC相交于點(diǎn)F,設(shè)DE=x.
(1)用含x的代數(shù)式表示線段CF的長(zhǎng);
(2)如果把△CAE的周長(zhǎng)記作C△CAE,△BAF的周長(zhǎng)記作C△BAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;
(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算題
(1)計(jì)算:﹣32÷(﹣3)2+3×(﹣2)+|﹣4|
(2)計(jì)算:
(3)化簡(jiǎn):(5a2+2a﹣1)﹣4[3﹣2(4a+a2)]
(4)化簡(jiǎn):3x2﹣[7x﹣(4x﹣3)﹣2x2]
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形紙片中,,,折疊紙片使點(diǎn)落在邊上的處,折痕為.過(guò)點(diǎn)作交于,連接.
(1)求證:四邊形為菱形;
(2)當(dāng)點(diǎn)在邊上移動(dòng)時(shí),折痕的端點(diǎn),也隨之移動(dòng).
①當(dāng)點(diǎn)與點(diǎn)重合時(shí)(如圖),求菱形的邊長(zhǎng);
②若限定,分別在邊,上移動(dòng),求出點(diǎn)在邊上移動(dòng)的最大距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com