【題目】在平面直角坐標系中,二次函數(shù)的圖象與軸交于點.

1)求該二次函數(shù)的解析式,并在下圖中畫出示意圖;

2)將該二次函數(shù)的圖象向上平移幾個單位長度,可使平移后所得圖象經(jīng)過坐標原點?

【答案】(1)答案見解析 (2)3個

【解析】

1)將點代入二次函數(shù)解析式即可確定二次函數(shù)的解析式;將確定的二次函數(shù)解析式變形為頂點式,則可求出拋物線的對稱軸及頂點坐標,由此即可畫出二次函數(shù)的示意圖.

2)觀察圖象即可知圖象要經(jīng)過坐標原點,向上平移3個單位即可.

解.(1)由題意得,解得,

故二次函數(shù)的解析式為.

變形為,

則二次函數(shù)的對稱軸為,頂點坐標為.

示意圖如下圖所示.

2)因為該二次函數(shù)的圖象與軸的交點坐標為.

故將該二次函數(shù)的圖象向上平移3個單位長度后,可使平移后所得的圖象經(jīng)過坐標原點.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半徑為10的⊙中,弦,所對的圓心角分別是,若,,則弦的長等于(  )

A. 18B. 16C. 10D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以下說法合理的是(  )

A. 小明做了3次擲圖釘?shù)膶嶒,發(fā)現(xiàn)2次釘尖朝上,由此他說釘尖朝上的概率是

B. 某彩票的中獎概率是5%,那么買100張彩票一定有5張中獎

C. 某射擊運動員射擊一次只有兩種可能的結(jié)果:中靶與不中靶,所以他擊中靶的概率是

D. 小明做了3次擲均勻硬幣的實驗,其中有一次正面朝上,2次正面朝下,他認為再擲一次,正面朝上的概率還是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABACBC4,tanB2,以AB的中點D為圓心,r為半徑作⊙D,如果點B在⊙D內(nèi),點C在⊙D外,那么r可以。ā 。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從甲、乙兩位運動員中選出一名參加在規(guī)定時間內(nèi)的投籃比賽.預先對這兩名運動員進行了6次測試,成績?nèi)缦拢▎挝唬簜):

甲:612,812,10,12;

乙:910,11,10,12,8

1)填表:

平均數(shù)

眾數(shù)

方差

10

   

   

   

10

2)根據(jù)測試成績,請你運用所學的統(tǒng)計知識作出分析,派哪一位運動員參賽更好?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形紙片ABCD,AB=9,BC=6,在矩形邊上有一點P,且DP=3.將矩形紙片折疊,使點B與點P重合,折痕所在直線交矩形兩邊于點E,F(xiàn),則EF長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,平面直角坐標系中,BC兩點的坐標分別為B0,3)和C0,﹣),點Ax軸正半軸上,且滿足∠BAO30°

1)過點CCEAB于點E,交AO于點F,點G為線段OC上一動點,連接GF,將OFG沿FG翻折使點O落在平面內(nèi)的點O處,連接OC,求線段OF的長以及線段OC的最小值;

2)如圖2,點D的坐標為D(﹣1,0),將BDC繞點B順時針旋轉(zhuǎn),使得BCAB于點B,將旋轉(zhuǎn)后的BDC沿直線AB平移,平移中的BDC記為BDC,設直線BCx軸交于點MN為平面內(nèi)任意一點,當以B、DM、N為頂點的四邊形是菱形時,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】經(jīng)市場調(diào)查,某種商品在第x天的售價與銷量的相關信息如下表;已知該商品的進價為每件30元,設銷售該商品每天的利潤為y元.

1)求出yx的函數(shù)關系式;

2問銷售該商品第幾天時,當天銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)和反比例函數(shù)

1)如圖1,若,且函數(shù)、的圖象都經(jīng)過點

①求,的值;

②直接寫出當的范圍;

2)如圖2,過點軸的平行線與函數(shù)的圖象相交于點,與反比例函數(shù)的圖象相交于點

①若,直線與函數(shù)的圖象相交點.當點、中的一點到另外兩點的距離相等時,求的值;

②過點軸的平行線與函數(shù)的圖象相交于點.當的值取不大于1的任意實數(shù)時,點、間的距離與點、間的距離之和始終是一個定值.求此時的值及定值

查看答案和解析>>

同步練習冊答案