【題目】甲、乙兩校參加區(qū)教育局舉辦的學(xué)生英語(yǔ)口語(yǔ)競(jìng)賽,兩校參賽人數(shù)相等.比賽結(jié)束后,發(fā)現(xiàn)學(xué)生成績(jī)分別為7分、8分、9分、10分(滿分為10分).依據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計(jì)圖表.

(1)在圖1中,“7分”所在扇形的圓心角等于°.
(2)請(qǐng)你將圖2的統(tǒng)計(jì)圖補(bǔ)充完整;
(3)經(jīng)計(jì)算,乙校的平均分是8.3分,中位數(shù)是8分,請(qǐng)寫出甲校的平均分、中位數(shù);并從平均分和中位數(shù)的角度分析哪個(gè)學(xué)校成績(jī)較好.
(4)如果該教育局要組織8人的代表隊(duì)參加市級(jí)團(tuán)體賽,為便于管理,決定從這兩所學(xué)校中的一所挑選參賽選手,請(qǐng)你分析,應(yīng)選哪所學(xué)校?

【答案】
(1)144
(2)解:利用扇形圖:10分所占的百分比是90°÷360°=25%,

則總?cè)藬?shù)為:5÷25%=20(人),

得8分的人數(shù)為:20× =3(人).

如圖


(3)解:根據(jù)乙校的總?cè)藬?shù),知甲校得9分的人數(shù)是20﹣8﹣11=1(人).

甲校的平均分:(7×11+9+80)÷20=8.3分;

中位數(shù)為7分.

由于兩校平均分相等,乙校成績(jī)的中位數(shù)大于甲

校的中位數(shù),所以從平均分和中位數(shù)角度上判斷,

乙校的成績(jī)較好


(4)解:因?yàn)檫x8名學(xué)生參加市級(jí)口語(yǔ)團(tuán)體賽,甲校得

(10分)的有8人,而乙校得(10分)的只有5人,所以應(yīng)選甲校.


【解析】解:(1)利用扇形圖可以得出: “7分”所在扇形的圓心角=360°﹣90°﹣72°﹣54°=144°;
(1)根據(jù)扇形統(tǒng)計(jì)圖中所標(biāo)的圓心角的度數(shù)進(jìn)行計(jì)算;(2)根據(jù)10分所占的百分比是90°÷360°=25%計(jì)算總?cè)藬?shù),再進(jìn)一步求得8分的人數(shù),即可補(bǔ)全條形統(tǒng)計(jì)圖;(3)根據(jù)乙校人數(shù)得到甲校人數(shù),再進(jìn)一步求得其9分的人數(shù),從而求得平均數(shù)和中位數(shù),并進(jìn)行綜合分析;(4)觀察兩校的高分人數(shù)進(jìn)行分析.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠設(shè)門市部專賣某產(chǎn)品,該產(chǎn)品每件成本40元,從開(kāi)業(yè)一段時(shí)間的每天銷售統(tǒng)計(jì)中,隨機(jī)抽取一部分情況如下表所示:

每件銷售價(jià)(元)

50

60

70

75

80

85

每天售出件數(shù)

300

240

180

150

120

90

假設(shè)當(dāng)天定的售價(jià)是不變的,且每天銷售情況均服從這種規(guī)律.
(1)觀察這些統(tǒng)計(jì)數(shù)據(jù),找出每天售出件數(shù)y與每件售價(jià)x(元)之間的函數(shù)關(guān)系,并寫出該函數(shù)關(guān)系式.
(2)門市部原設(shè)有兩名營(yíng)業(yè)員,但當(dāng)銷售量較大時(shí),在每天售出量超過(guò)168件時(shí),則必須增派一名營(yíng)業(yè)員才能保證營(yíng)業(yè)有序進(jìn)行,設(shè)營(yíng)業(yè)員每人每天工資為40元.求每件產(chǎn)品應(yīng)定價(jià)多少元,才能使每天門市部純利潤(rùn)最大(純利潤(rùn)指的是收入總價(jià)款扣除成本及營(yíng)業(yè)員工資后的余額,其它開(kāi)支不計(jì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)y=kx+b的圖象過(guò)P(1,4),Q(4,1)兩點(diǎn),且與x軸交于A點(diǎn).

(1)求此一次函數(shù)的解析式;

(2)求△POQ的面積;

(3)已知點(diǎn)M在x軸上,若使MP+MQ的值最小,

求點(diǎn)M的坐標(biāo)及MP+MQ的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAD=CAE=90°,AB=AD,AE=AC,AFCB,垂足為F.

(1)求證:△ABC≌△ADE;(圖1)

(2)求∠FAE的度數(shù);(圖1)

(3)如圖2,延長(zhǎng)CFG點(diǎn),使BF=GF,連接AG.求證:CD=CG;并猜想CD2BF+DE的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)yl=x(x≥0), (x>0)的圖象如圖所示,則結(jié)論: ①兩函數(shù)圖象的交點(diǎn)A的坐標(biāo)為(3,3);
②當(dāng)x>3時(shí),y2>y1
③當(dāng)x=1時(shí),BC=8;
④當(dāng)x逐漸增大時(shí),yl隨著x的增大而增大,y2隨著x的增大而減小.
其中正確結(jié)論的序號(hào)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點(diǎn) D AB的中點(diǎn).

(1)如果點(diǎn) P 在線段 BC 上以 1cm/s 的速度由點(diǎn) B 向點(diǎn) C 運(yùn)動(dòng),同時(shí),點(diǎn) Q 在線段 CA 上由點(diǎn) C 向點(diǎn) A 運(yùn)動(dòng).

若點(diǎn) Q 的運(yùn)動(dòng)速度與點(diǎn) P 的運(yùn)動(dòng)速度相等,經(jīng)過(guò) 1 秒后,△BPD △CQP 是否全等,請(qǐng)說(shuō)明理由;

若點(diǎn) Q 的運(yùn)動(dòng)速度與點(diǎn) P 的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn) Q 的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD △CQP 全等?

(2)若點(diǎn) Q 以②中的運(yùn)動(dòng)速度從點(diǎn) C 出發(fā),點(diǎn) P 以原來(lái)的運(yùn)動(dòng)速度從點(diǎn) B 同時(shí)出發(fā),都逆時(shí)針沿△ABC 三邊運(yùn)動(dòng),則經(jīng)過(guò) 后,點(diǎn) P 與點(diǎn) Q 第一次在△ABC 的 邊上相遇?(在橫線上直接寫出答案,不必書(shū)寫解題過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖所示 AD、AE分別是△ABC的中線、高,且AB=5cm,AC=3cm,,△ABD△ACD的周長(zhǎng)之差為_________,△ABD△ACD的面積關(guān)系為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩校參加區(qū)教育局舉辦的學(xué)生英語(yǔ)口語(yǔ)競(jìng)賽,兩校參賽人數(shù)相等.比賽結(jié)束后,發(fā)現(xiàn)學(xué)生成績(jī)分別為7分、8分、9分、10分(滿分為10分).依據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計(jì)圖表.

(1)在圖1中,“7分”所在扇形的圓心角等于°.
(2)請(qǐng)你將圖2的統(tǒng)計(jì)圖補(bǔ)充完整;
(3)經(jīng)計(jì)算,乙校的平均分是8.3分,中位數(shù)是8分,請(qǐng)寫出甲校的平均分、中位數(shù);并從平均分和中位數(shù)的角度分析哪個(gè)學(xué)校成績(jī)較好.
(4)如果該教育局要組織8人的代表隊(duì)參加市級(jí)團(tuán)體賽,為便于管理,決定從這兩所學(xué)校中的一所挑選參賽選手,請(qǐng)你分析,應(yīng)選哪所學(xué)校?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長(zhǎng)都為的大正方形,兩塊是邊長(zhǎng)都為的小正方形,五塊是長(zhǎng)為、寬為的全等小矩形,且> .(以上長(zhǎng)度單位:cm)

(1)觀察圖形,可以發(fā)現(xiàn)代數(shù)式可以因式分解為 ;

(2)若每塊小矩形的面積為10,四個(gè)正方形的面積和為58,試求圖中所有裁剪線(虛線部分)長(zhǎng)之和.

查看答案和解析>>

同步練習(xí)冊(cè)答案