【題目】如圖,已知∠ABC=90°,D是直線AB上的點(diǎn),AD=BC

(1)如圖1,過(guò)點(diǎn)AAFAB,截取AF=BD,連接DC、DFCF,判斷△CDF的形狀并證明;

(2)如圖2,E是直線BC上一點(diǎn),且CE=BD,直線AE、CD相交于點(diǎn)P,∠APD的度數(shù)是一個(gè)固定的值嗎?若是,請(qǐng)求出它的度數(shù);若不是,請(qǐng)說(shuō)明理由.

【答案】(1△CDF是等腰三角形;(2∠APD=45°

【解析】試題分析:(1)利用SAS證明△AFD△BDC全等,再利用全等三角形的性質(zhì)得出FD=DC,即可判斷三角形的形狀;

2)作AF⊥ABA,使AF=BD,連結(jié)DF,CF,利用SAS證明△AFD△BDC全等,再利用全等三角形的性質(zhì)得出FD=DC,∠FDC=90°,即可得出∠FCD=∠APD=45°

試題解析:(1△CDF是等腰直角三角形,理由如下:

∵AF⊥AD,∠ABC=90°∴∠FAD=∠DBC,

FADDBC中, ,∴△FAD≌△DBCSAS),

∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,

∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,

∴△CDF是等腰直角三角形;

2)作AF⊥ABA,使AF=BD,連結(jié)DFCF,如圖,∵AF⊥AD,∠ABC=90°

∴∠FAD=DBC,在FADDBC中, ,∴△FAD≌△DBCSAS),

∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC∴∠FDA=∠DCB,

∵∠BDC+∠DCB=90°∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形,

∴∠FCD=45°∵AF∥CE,且AF=CE,四邊形AFCE是平行四邊形,

∴AE∥CF,∴∠APD=∠FCD=45°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在正方形ABCD中,點(diǎn)E、F分別為邊BCCD的中點(diǎn),AF、DE相交于點(diǎn)G,則可得結(jié)論:①AFDE,②AFDE(不須證明).

1)如圖,若點(diǎn)E、F不是正方形ABCD的邊BCCD的中點(diǎn),但滿足CEDF,則上面的結(jié)論、是否仍然成立;(請(qǐng)直接回答“成立”或“不成立”)

2)如圖,若點(diǎn)E、F分別在正方形ABCD的邊CB的延長(zhǎng)線和DC的延長(zhǎng)線上,且CEDF,此時(shí)上面的結(jié)論是否仍然成立?若成立,請(qǐng)寫出證明過(guò)程;若不成立,請(qǐng)說(shuō)明理由.

3)如圖,在(2)的基礎(chǔ)上,連接AEEF,若點(diǎn)MN、P、Q分別為AEEF、FDAD的中點(diǎn),請(qǐng)先判斷四邊形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一種,并寫出證明過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】按下面的程序計(jì)算:當(dāng)輸入x=100 時(shí),輸出結(jié)果是299;當(dāng)輸入x=50時(shí),輸出結(jié)果是446;如果輸入 x 的值是正整數(shù),輸出結(jié)果是257,那么滿足條件的x的值最多有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線經(jīng)過(guò)A(-2,0)B(-3,3)及原點(diǎn)O,頂點(diǎn)為C。

(1)求拋物線的解析式;

(2)若點(diǎn)D在拋物線上,點(diǎn)E在拋物線的對(duì)稱軸上,且A、O、D、E為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)D的坐標(biāo)。

(3)P是拋物線上的第一象限內(nèi)的動(dòng)點(diǎn),過(guò)點(diǎn)PPM⊥ x軸,垂足為M,是否存在點(diǎn)P點(diǎn)使得以P、M、A為頂點(diǎn)的三角形與△BOC相似?若存在,求P點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為慶祝春節(jié),市政府決定在市政廣場(chǎng)上增一排燈花,其設(shè)計(jì)由以下圖案逐步演變而成,其中圓圈代表燈花中的燈泡,n代表第n次演變過(guò)程,s代表第n次演變后的燈泡的個(gè)數(shù),仔細(xì)觀察下列演變過(guò)程,當(dāng)n=7時(shí),s= ).

A.162B.176C.190D.214

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在學(xué)習(xí)了《展開與折疊》這一課后,明白了很多幾何體都能展開成平面圖形.于是他在家用剪刀展開了一個(gè)長(zhǎng)方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學(xué)的知識(shí),回答下列問(wèn)題:

1)小明總共剪開了   條棱.

2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過(guò)折疊以后,仍然可以還原成一個(gè)長(zhǎng)方體紙盒,你認(rèn)為他應(yīng)該將剪斷的紙條粘貼到①中的什么位置?請(qǐng)你幫助小明在圖上補(bǔ) 全.(請(qǐng)?jiān)趥溆脠D中畫出所有可能)

3)小明說(shuō):他所剪的所有棱中,最長(zhǎng)的一條棱是最短的一條棱的4倍.現(xiàn)在已知這個(gè)長(zhǎng)方體紙盒的底面是一個(gè)正方形,并且這個(gè)長(zhǎng)方體紙盒所有棱長(zhǎng)的和是720cm,求這個(gè)長(zhǎng)方體紙盒的體積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】生活中處處有數(shù)學(xué),下列原理運(yùn)用錯(cuò)誤的是

A.建筑工人砌墻時(shí)拉的參照線是運(yùn)用兩點(diǎn)之間線段最短的原理

B.修理?yè)p壞的椅子腿時(shí)斜釘?shù)哪緱l是運(yùn)用三角形穩(wěn)定性的原理

C.測(cè)量跳遠(yuǎn)的成績(jī)是運(yùn)用垂線段最短的原理

D.將車輪設(shè)計(jì)為圓形是運(yùn)用了圓的旋轉(zhuǎn)對(duì)稱性原理

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線y=-x+3x軸、y軸相交于AB兩點(diǎn),點(diǎn)C在線段OA上,將線段CB繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到CD,此時(shí)點(diǎn)D恰好落在直線AB上,過(guò)點(diǎn)DDEx軸于點(diǎn)E

1)求證:△BOC≌△CED;

2)如圖2,將△BCD沿x軸正方向平移得△B'C'D',當(dāng)B'C'經(jīng)過(guò)點(diǎn)D時(shí),求△BCD平移的距離及點(diǎn)D的坐標(biāo);

3)若點(diǎn)Py軸上,點(diǎn)Q在直線AB上,是否存在以C、DP、Q為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,之間的距離為3, 之間的距離為6, 分別等邊三角形的三個(gè)頂點(diǎn),則此三角形的邊長(zhǎng)為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案