【題目】如圖所示,DAAB,EAAC,AB=AD,AC=AE,BECD相交于O,ABCD相交于P,則∠DOE的度數(shù)是____.

【答案】90°

【解析】

根據(jù)已知條件易證得△AEB≌△ACD,可得∠D=ABE,由DAAB可得∠D+APD=90°,而由圖可知∠APD和∠BPO是對頂角相等,即可得∠DOE=DOB=90°.

解:∵DAAB,EAAC,

∴∠DAB=CAE=90°,

∴∠DAB+BAC=CAE+BAC,即∠DAC=BAE,

又∵AB=AD,AC=AE,

∴△AEB≌△ACDSAS),

∴∠D=ABE;

DAAB,

∴∠D+APD=90°,

∵∠APD=BPO(對頂角相等),已證得∠D=ABE

∴∠BPO+ABE=90°,

∴∠DOE=DOB=90°.

故答案為:90°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,一張邊長為的正方形硬紙板,把它的四個角都剪去一個邊長為工(為正整數(shù))的小正方形,然后把它折成一個無蓋的長方體,設(shè)長方體的容積為,請回答下列問題:

1)用含有的代數(shù)式表示,則

2)完成下表:

1

2

3

4

5

6

7

3)觀察上表,當取什么值時,容積的值最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,數(shù)軸上,O點與C點對應(yīng)的數(shù)分別是0、60(單位:單位長度),將一根質(zhì)地均勻的直尺AB放在數(shù)軸上(AB的左邊),若將直尺在數(shù)軸上水平移動,當A點移動到B點的位置時,B點與C點重合,當B點移動到A點的位置時,A點與O點重合.

(1)直尺的長為多少個單位長度(直接寫答案)

(2)如圖2,直尺AB在數(shù)軸上移動,有BC=4OA,求此時A點對應(yīng)的數(shù);

(3)如圖3,以OC為邊搭一個橫截面為長方形的不透明的篷子,將直尺放入篷內(nèi)的數(shù)軸上的某處(看不到直尺的任何部分,AB的左邊),將直尺AB沿數(shù)軸以5個單位/秒的速度分別向左、向右移動,直到完全看到直尺,所經(jīng)歷的時間為t1、t2t1﹣t2=2(秒),求直尺放入蓬內(nèi),A點對應(yīng)的數(shù)為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,∠E∠F90°,∠B∠C,AEAF.有以下結(jié)論:①EMFN;②CDDN③∠FAN∠EAM;④△ACN≌△ABM.其中正確的有( ).

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點E,F(xiàn)分別在AD,BC上,將紙片ABCD沿直線EF折疊,點C落在AD上的一點H處,點D落在點G處,有以下四個結(jié)論:
①四邊形CFHE是菱形;
②EC平分∠DCH;
③線段BF的取值范圍為3≤BF≤4;
④當點H與點A重合時,EF=2
以上結(jié)論中,你認為正確的有 . (填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC,OAC邊上的一點.過點O作直線MNBC,設(shè)MN交∠BCA的平分線于點E,交∠BCA的外角平分線于F

1)求證:EO=FO;(2)若CE=4,CF=3,你還能得到那些結(jié)論?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】

(1)如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是DCP的平分線上一點.若AMN=90°,求證:AM=MN.

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.

證明:在邊AB上截取AE=MC,連ME.正方形ABCD中,B=BCD=90°,AB=BC.

∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=MAB=MAE.

(下面請你完成余下的證明過程)

(2)若將(1)中的正方形ABCD改為正三角形ABC(如圖2),N是ACP的平分線上一點,則當AMN=60°時,結(jié)論AM=MN是否還成立?請說明理由.

(3)若將(1)中的正方形ABCD改為邊形ABCD……X,請你作出猜想:當AMN= °時,結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某高校學生會發(fā)現(xiàn)同學們就餐時剩余飯菜較多,浪費嚴重,于是準備在校內(nèi)倡導(dǎo)“光盤行動”,讓同學們珍惜糧食,為了讓同學們理解這次活動的重要性,校學生會在某天午餐后,隨機調(diào)查了部分同學這餐飯菜的剩余情況,并將結(jié)果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖.
(1)這次被調(diào)查的同學共有名;
(2)把條形統(tǒng)計圖補充完整;
(3)校學生會通過數(shù)據(jù)分析,估計這次被調(diào)查的所有學生一餐浪費的食物可以供200人用一餐.據(jù)此估算,該校18 000名學生一餐浪費的食物可供多少人食用一餐?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我縣果菜大王王大炮收貨番茄20噸,青椒12噸.現(xiàn)計劃租用甲、乙兩種貨車共8輛將這批果菜全部運往外地銷售,已知一輛甲種貨車可裝番茄4噸和青椒1噸,一輛乙種貨車可裝番茄和青椒各2噸.

1)王燦有幾種方案安排甲、乙兩種貨車可一次性地將果菜運到銷售地?

2)若甲種貨車每輛要付運輸費300元,乙種貨車每輛要付運輸費240元,則果農(nóng)王大炮應(yīng)選擇哪種方案,使運輸費最少?最少運費是多少?

查看答案和解析>>

同步練習冊答案