分析 (1)連接OD,由平行線(xiàn)的判定定理可得OD∥AC,利用平行線(xiàn)的性質(zhì)得∠ODE=∠DEA=90°,可得DE為⊙O的切線(xiàn);
(2)連接CD,由BC為直徑,利用圓周角定理可得∠ADC=90°,由∠A=30°,AC=BC=4,利用銳角三角函數(shù)可得AD.
解答 (1)證明:連接OD,
∵OD=OB,
∴∠ODB=∠B,
∵AC=BC,
∴∠A=∠B,
∴∠ODB=∠A,
∴OD∥AC,
∴∠ODE=∠DEA=90°,
∴DE為⊙O的切線(xiàn);
(2)解:連接CD,
∵BC為直徑,
∴∠ADC=90°,
∵∠A=30°,
又∵AC=BC=4,
∴AD=AC•cos30°=4×$\frac{\sqrt{3}}{2}$=2$\sqrt{3}$.
點(diǎn)評(píng) 本題主要考查了圓周角定理,平行線(xiàn)的性質(zhì)及判定定理,作出恰當(dāng)?shù)妮o助線(xiàn)構(gòu)建直角三角形是解答此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3mn與-4nm | B. | -mn2與m2n | C. | 2x3與-3y3 | D. | 3ab與-abc |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com