【題目】若矩形的一個(gè)短邊與長(zhǎng)邊的比值為,(黃金分割數(shù)),我們把這樣的矩形叫做黃金矩形

(1)操作:請(qǐng)你在如圖所示的黃金矩形ABCD(AB>AD)中,以短邊AD為一邊作正方形AEFD.

(2)探究:在(1)中的四邊形EBCF是不是黃金矩形?若是,請(qǐng)予以證明;若不是,請(qǐng)說(shuō)明理由.

(3)歸納:通過(guò)上述操作及探究,請(qǐng)概括出具體有一般性的結(jié)論(不需證明)

【答案】(1)見(jiàn)解析;(2)矩形EBCF不是黃金矩形,理由見(jiàn)解析;(3)若以黃金矩形的短邊為邊在矩形內(nèi)作(截割)正方形,則剩余矩形必為黃金矩形.

【解析】

(1)如圖,分兩種情況:正方形中,AD的對(duì)邊在矩形的內(nèi)部或外部;

(2)矩形EBCF不是黃金矩形, 設(shè)AB=a,AD=b(a>b),則BE=BA+AE=a+b,BE′=BA-E′A=a-b,由已知得=,所以==÷(1+)=÷(1+)=,對(duì)應(yīng)邊不成比例,故矩形EBCF不是黃金矩形;矩形E′BCF′是黃金矩形,

理由:==(1-)÷=(1-)÷=,即對(duì)應(yīng)邊成比例,故兩個(gè)矩形相似.

(3)由(1)、(2)可發(fā)現(xiàn)結(jié)論:若以黃金矩形的短邊為邊在矩形內(nèi)作(截割)正方形,則剩余矩形必為黃金矩形.

解:(1)以AD為邊可作出兩個(gè)正方形AEFD與AE′F′D′(AB>AD),如圖所示

(2)矩形EBCF不是黃金矩形,理由如下:

設(shè)AB=a,AD=b(a>b),則BE=BA+AE=a+b,BE′=BA-E′A=a-b,

由ABCD為黃金矩形,得=

==÷(1+)=÷(1+)=

∴矩形EBCF不是黃金矩形;

矩形E′BCF′是黃金矩形.

證明:如圖,∵==(1-)÷=(1-)÷=

∴E′BCF′是黃金矩形

(3)由(1)、(2)可發(fā)現(xiàn)結(jié)論:若以黃金矩形的短邊為邊在矩形內(nèi)作(截割)正方形,則剩余矩形必為黃金矩形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在中,AB=AC,∠ABC =,DBC邊上一點(diǎn),以AD為邊作,使AE=AD,+=180°

1)直接寫(xiě)出∠ADE的度數(shù)(用含的式子表示);

2)以AB,AE為邊作平行四邊形ABFE,

如圖2,若點(diǎn)F恰好落在DE上,求證:BD=CD;

如圖3,若點(diǎn)F恰好落在BC上,求證:BD=CF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線(xiàn)段AB是⊙O的直徑,點(diǎn)C在⊙O上,且∠CAB=30°,設(shè)點(diǎn)D是線(xiàn)段AC上任意一點(diǎn)(不含端點(diǎn)),連接OD,當(dāng)CD+OD的最小值為9時(shí),則⊙O的直徑AB的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小林在沒(méi)有量角器和圓規(guī)的情況下,利用刻度尺和一副三角板畫(huà)出了一個(gè)角的平分線(xiàn),他的做法是這樣的:如圖,

①利用刻度尺在∠AOB的兩邊OA,OB上分別取OM=ON;

②利用兩個(gè)三角板,分別過(guò)點(diǎn)M,N畫(huà)OM,ON的垂線(xiàn),交點(diǎn)為P;

③畫(huà)射線(xiàn)OP.則射線(xiàn)OP為∠AOB的平分線(xiàn).

(1)請(qǐng)寫(xiě)出射線(xiàn)OP為∠AOB的平分線(xiàn)的證明過(guò)程.

(2)請(qǐng)根據(jù)你的證明過(guò)程,寫(xiě)出小林的畫(huà)法的依據(jù)______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,有不重合的兩個(gè)點(diǎn)Qx1,y1)與Px2,y2).若Q,P為某個(gè)直角三角形的兩個(gè)銳角頂點(diǎn),且該直角三角形的直角邊均與x軸或y軸平行(或重合),則我們將該直角三角形的兩條直角邊的邊長(zhǎng)之和稱(chēng)為點(diǎn)Q與點(diǎn)P之間的“折距”,記做DPQ.特別地,當(dāng)PQ與某條坐標(biāo)軸平行(或重合)時(shí),線(xiàn)段PQ的長(zhǎng)即點(diǎn)Q與點(diǎn)P之間的“折距”.例如,在圖1中,點(diǎn)P1,-1),點(diǎn)Q3,-2),此時(shí)點(diǎn)Q與點(diǎn)P之間的“折距”DPQ=3

1)①已知O為坐標(biāo)原點(diǎn),點(diǎn)A3,-2),B(-1,0),則DAO=______,DBO=______.

②點(diǎn)C在直線(xiàn)y=-x+4上,請(qǐng)你求出DCO的最小值.

2)點(diǎn)E是以原點(diǎn)O為圓心,1為半徑的圓上的一個(gè)動(dòng)點(diǎn),點(diǎn)F是直線(xiàn)y=3x+6上以動(dòng)點(diǎn).請(qǐng)你直接寫(xiě)出點(diǎn)E與點(diǎn)F之間“折距”DEF的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,AD=BC=2AB,FAD的中點(diǎn),作CEAB,垂足E在線(xiàn)段AB上,連接EF、CF

1)若∠ADC=80°,求∠ECF;

2)求證:∠ECF=CEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形的邊長(zhǎng)為1,點(diǎn)與原點(diǎn)重合,點(diǎn)軸的正半軸上,點(diǎn)軸的負(fù)半軸上將正方形繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至正方形的位置,相交于點(diǎn),的坐標(biāo)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知以E30)為圓心,以5為半徑的⊙Ex軸交于AB兩點(diǎn),與y軸交于C點(diǎn),拋物線(xiàn)經(jīng)過(guò)A,BC三點(diǎn),頂點(diǎn)為F

1)求AB,C三點(diǎn)的坐標(biāo);

2)求拋物線(xiàn)的解析式及頂點(diǎn)F的坐標(biāo);

3)已知M為拋物線(xiàn)上一動(dòng)點(diǎn)(不與C點(diǎn)重合),試探究:

使得以A,BM為頂點(diǎn)的三角形面積與△ABC的面積相等,求所有符合條件的點(diǎn)M的坐標(biāo);

若探究中的M點(diǎn)位于第四象限,連接M點(diǎn)與拋物線(xiàn)頂點(diǎn)F,試判斷直線(xiàn)MF⊙E的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在⊙O中,AB為直徑,點(diǎn)PAB的延長(zhǎng)線(xiàn)上,PC與⊙O相切于點(diǎn)C,點(diǎn)D為弧AC上的點(diǎn),且2DAB﹣∠P90°,連接AD

1)如圖1,求證:弧AD=弧BC;

2)如圖2PC6,PB,求∠ADC度數(shù);

3)如圖3,在(2)的條件下,FAB下方⊙O上一點(diǎn).∠ACF60°,LOF中點(diǎn),LKALL,交CF于點(diǎn)K.連接AK,求AK的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案