精英家教網 > 初中數學 > 題目詳情

【題目】如圖,都是由同樣大小的⊙按一定規(guī)律所組成的,其中第一個圖形有5個⊙,第二個圖形一共有8個⊙,第3個圖形中一共有11個⊙,第4個圖形中一共有14個⊙,,按此規(guī)律排列,第2019個圖形中基本圖形的個數為(

A.6056B.6057C.6058D.6059

【答案】D

【解析】

將原圖形中基本圖形劃分為中間部分和兩邊部分,中間基本圖形個數等于序數,兩邊基本圖形的個數和等于序數加1的兩倍,據此規(guī)律可得答案.

解:∵第①個圖形中基本圖形的個數5=1+2×2

第②個圖形中基本圖形的個數8=2+2×3,

第③個圖形中基本圖形的個數11=3+2×4,

第④個圖形中基本圖形的個數14=4+2×5,

∴第n個圖形中基本圖形的個數為n+2n+1=3n+2

n=2019時,3n+2=3×2019+2=6059

故選:D

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知AC平分∠BAD,CEABE,CFADF,且BCCD

1)求證:△BCE≌△DCF;

2)若AB15,AD7BC5,求CE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】日照間距系數反映了房屋日照情況.如圖①,當前后房屋都朝向正南時,日照間距系數=L:(H﹣H1),其中L為樓間水平距離,H為南側樓房高度,H1為北側樓房底層窗臺至地面高度.

如圖②,山坡EF朝北,EF長為15m,坡度為i=1:0.75,山坡頂部平地EM上有一高為22.5m的樓房AB,底部AE點的距離為4m.

(1)求山坡EF的水平寬度FH;

(2)欲在AB樓正北側山腳的平地FN上建一樓房CD,已知該樓底層窗臺P處至地面C處的高度為0.9m,要使該樓的日照間距系數不低于1.25,底部CF處至少多遠?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形網格中,每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.網格中有一個格點ABC(即三角形的頂點都在格點上).

1)在圖中作出ABC關于直線l對稱的A1B1C1 (要求AA1,BB1,CC1相對應);

2)求ABC的面積;

3)在直線l上找一點P,使得PAC的周長最。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】按下列程序計算,把答案填寫在表格里,然后看看有什么規(guī)律,想想為什么會有

這個規(guī)律?

(1)填寫表內空格:

輸入

3

2

-2

輸出答案

0

(2)你發(fā)現的規(guī)律是____________.

(3)用簡要過程說明你發(fā)現的規(guī)律的正確性.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,如果在正方形中畫條縱線和條橫線,便把正方形分成部分(如圖①);如果在正方形中畫條縱線和條橫線,便把正方形分成部分(如圖②);如果在正方形中畫條縱線和條橫線,便把正方形分成部分(如圖③...如果在正方形中畫條縱線和條橫線.便把正方形分成( )部分

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了發(fā)展學生的核心素養(yǎng),培養(yǎng)學生的綜合能力,某中學利用陽光大課間,組織學生積極參加豐富多彩的課外活動,學校成立了舞蹈隊、足球隊、籃球隊、毽子隊、射擊隊等,其中射擊隊在某次訓練中,甲、乙兩名隊員各射擊10發(fā)子彈,成績用下面的折線統計圖表示:(甲為實線,乙為虛線)

(1)依據折線統計圖,得到下面的表格:

射擊次序(次)

1

2

3

4

5

6

7

8

9

10

甲的成績(環(huán))

8

9

7

9

8

6

7

10

8

乙的成績(環(huán))

6

7

9

7

9

10

8

7

10

其中________,________;

(2)甲成績的眾數是________環(huán),乙成績的中位數是________環(huán);

(3)請運用方差的知識,判斷甲、乙兩人誰的成績更為穩(wěn)定?

(4)該校射擊隊要參加市組織的射擊比賽,已預選出2名男同學和2名女同學,現要從這4名同學中任意選取2名同學參加比賽,請用列表或畫樹狀圖法,求出恰好選到11女的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】近年來,霧霾天氣給人們的生活帶來很大影響,空氣質量問題倍受人們關注,某學校計劃在教室內安裝空氣凈化裝置,需購進A、B兩種設備,已知:購買1臺A種設備和2臺B種設備需要3.5萬元;購買2臺A種設備和1臺B種設備需要2.5萬元.

(1)求每臺A種、B種設備各多少萬元?

(2)根據學校實際,需購進A種和B種設備共30臺,總費用不超過30萬元,請你通過計算,求至少購買A種設備多少臺?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,△ACB和△DCE均為等邊三角形,點A. D.E在同一直線上,連接BE.

填空:(1),①∠AEB的度數為 ;②線段AD、BE之間的數量關系是 ;

(2)拓展探究:如圖2,ACB和△DCE均為等腰直角三角形,ACB=DCE=90°,點A、DE在同一直線上,且交BC于點F,連接BE.若∠CAF=BAF,BE=2,試求AF的長.

查看答案和解析>>

同步練習冊答案