【題目】如圖,A、B是圓O上的兩點(diǎn),∠AOB=120°,C是AB弧的中點(diǎn).

(1)求證:AB平分∠OAC;
(2)延長(zhǎng)OA至P使得OA=AP,連接PC,若圓O的半徑R=1,求PC的長(zhǎng).

【答案】
(1)

證明:連接OC,

∵∠AOB=120°,C是AB弧的中點(diǎn),

∴∠AOC=∠BOC=60°,

∵OA=OC,

∴△ACO是等邊三角形,

∴OA=AC,同理OB=BC,

∴OA=AC=BC=OB,

∴四邊形AOBC是菱形,

∴AB平分∠OAC


(2)

解:連接OC,

∵C為弧AB中點(diǎn),∠AOB=120°,

∴∠AOC=60°,

∵OA=OC,

∴OAC是等邊三角形,

又∵OA=AP,

∴AP=AC,

∴∠APC=30°,

∴△OPC是直角三角形,


【解析】(1)連接OC,由∠AOB=120°,C是AB弧的中點(diǎn),∠AOC=∠BOC=60°,即可證明△ACO是等邊三角形,同理可證△BCO是等邊三角形,即OA=OB=AC=BC,則四邊形AOBC是菱形,根據(jù)菱形的對(duì)角線(xiàn)平分一組對(duì)角,可得AB平分∠OAC;
(2)證△OPC是直角三角形即可求得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的棱長(zhǎng)為1的正方體中,A,B,C,D,E是正方體的頂點(diǎn),M是棱CD的中點(diǎn).動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿著D→A→B的路線(xiàn)在正方體的棱上運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)B停止運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的路程是x,y=PM+PE,則y關(guān)于x的函數(shù)圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC,AB=BC,以AB為直徑的圓交AC于點(diǎn)D,過(guò)點(diǎn)D的⊙O的切線(xiàn)交BC于點(diǎn)E.若CD=5,CE=4,則⊙O的半徑是(
A.3
B.4
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△AOB∽△DOC,∠AOB=∠COD=90°,M為OA的中點(diǎn),OA=6,OB=8,將△COD繞O點(diǎn)旋轉(zhuǎn),連接AD,CB交于P點(diǎn),連接MP,則MP的最大值( )

A.7
B.8
C.9
D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,以點(diǎn)A為圓心,AB的長(zhǎng)為半徑的圓恰好與CD相切于點(diǎn)C,交AD于點(diǎn)E,延長(zhǎng)BA與⊙A相交于點(diǎn)F.若 的長(zhǎng)為 ,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算與解分式方程.
(1)

(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果一個(gè) 的函數(shù)圖像經(jīng)過(guò)平移后能與某反比例函數(shù)的圖像重合,那么稱(chēng)這個(gè)函數(shù)是 的“反比例平移函數(shù)”.
例如: 的圖像向左平移2個(gè)單位,再向下平移1個(gè)單位得到 的圖像,則 的“反比例平移函數(shù)”.
(1)若矩形的兩邊分別是2cm、3cm,當(dāng)這兩邊分別增加 cm、 cm后,得到的新矩形的面積為8 ,求 的函數(shù)表達(dá)式,并判斷這個(gè)函數(shù)是否為“反比例平移函數(shù)”.
(2)如圖,在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),矩形OABC的頂點(diǎn)A、C的坐標(biāo)分別為(9,0)、(0,3) .點(diǎn)D是OA的中點(diǎn),連接OB、CD交于點(diǎn)E,“反比例平移函數(shù)” 的圖像經(jīng)過(guò)B、E兩點(diǎn).則這個(gè)“反比例平移函數(shù)”的表達(dá)式為;這個(gè)“反比例平移函數(shù)”的圖像經(jīng)過(guò)適當(dāng)?shù)淖儞Q與某一個(gè)反比例函數(shù)的圖像重合,請(qǐng)寫(xiě)出這個(gè)反比例函數(shù)的表達(dá)式

(3)在(2)的條件下, 已知過(guò)線(xiàn)段BE中點(diǎn)的一條直線(xiàn) 交這個(gè)“反比例平移函數(shù)”圖像于P、Q兩點(diǎn)(P在Q的右側(cè)),若B、E、P、Q為頂點(diǎn)組成的四邊形面積為16,請(qǐng)求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在等腰△ABC中,AB=AC,F(xiàn)為AB邊上的中點(diǎn),延長(zhǎng)CB至D,使得BD=BC,連接AD交CF的延長(zhǎng)線(xiàn)于E.
(1)如圖1,若∠BAC=60°,求證:△CED為等腰三角形

(2)如圖2,若∠BAC≠60°,(1)中結(jié)論還成立嗎?若成立,請(qǐng)證明,若不成立,請(qǐng)說(shuō)明理由.

(3)如圖3,當(dāng) =是(直接填空),△CED為等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB為邊向外作等邊△ACD、等邊△ABE,EF⊥AB,垂足為F,連接DF,當(dāng)= 時(shí),四邊形ADFE是平行四邊形.

查看答案和解析>>

同步練習(xí)冊(cè)答案