點(diǎn)P為線段AB的黃金分割點(diǎn)(AP>BP),若AB=4,則線段AP的長約為( )
A.0.618
B.0.382
C..2.472
D..1.528
【答案】分析:根據(jù)黃金分割點(diǎn)的定義,知AP是較長線段;所以AP=AB,代入數(shù)據(jù)即可得出AP的長度.
解答:解:由于P為線段AB=4的黃金分割點(diǎn),
且AP>BP,
則AP=×4=2-2≈2.472.
故選C.
點(diǎn)評:本題考查了黃金分割.應(yīng)該識記黃金分割的公式:較短的線段=原線段的 ,較長的線段=原線段的
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,點(diǎn)C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn).
(1)某研究小組在進(jìn)行課題學(xué)習(xí)時,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果
S1
S
=
S2
S1
,那么稱直線l為該圖形的黃金分割線.(如圖2)精英家教網(wǎng)
問題.試在圖3的梯形中畫出至少五條黃金分割線,并說明理由.
(2)類似“黃金分割線”得“黃金分割面”定義:截面a將一個體積為V的圖形分成體積為V精英家教網(wǎng)1、V2的兩個圖形,且
V1
V
=
V2
V1
,則稱直線a為該圖形的黃金分割面.
問題:如圖4,長方體ABCD-EFGH中,T是線段AB上的黃金分割點(diǎn),證明經(jīng)過T點(diǎn)且平行于平面BCGF的截面QRST是長方體的黃金分割面.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,點(diǎn)C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時,由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果
S1
S
=
S2
S1
,那么稱直線l為該圖形的黃金分割線.
(1)研究小組猜想:在△ABC中,若點(diǎn)D為AB邊上的黃金分割點(diǎn)(如圖2),則直線CD是△ABC的黃金分割線.你認(rèn)為對嗎?為什么?
(2)請你說明:三角形的中線是否也是該三角形的黃金分割線?
(3)研究小組在進(jìn)一步探究中發(fā)現(xiàn):過點(diǎn)C任作一條直線交AB于點(diǎn)E,再過點(diǎn)D作直線DF∥CE,交AC于點(diǎn)F,連接EF(如圖3),則直線EF也是△ABC的黃金分割線.請你說明理由.
(4)如圖4,點(diǎn)E是平行四邊形ABCD的邊AB的黃金分割點(diǎn),過點(diǎn)E作EF∥AD,交DC于點(diǎn)F,顯然直線EF是平行四邊形ABCD的黃金分割線.請你畫一條平行四邊形ABCD的黃金分割線,使它不經(jīng)過平行四邊形ABCD各邊黃金分割點(diǎn).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1所示,點(diǎn)C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么點(diǎn)C為線段AB的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時,由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果
s1
s
=
s2
s1
,那么稱直線l為該圖形的黃金分割線.
(1)研究小組猜想:在△ABC中,若點(diǎn)D為AB邊上的黃金分割點(diǎn),如圖2所示,則精英家教網(wǎng)直線CD是△ABC的黃金分割線,你認(rèn)為對嗎?說說你的理由;
(2)請你說明:三角形的中線是否是該三角形的黃金分割線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(如圖1),點(diǎn)P將線段AB分成一條較小線段AP和一條較大線段BP,如果
AP
BP
=
BP
AB
,那么稱點(diǎn)P為線段AB的黃金分割點(diǎn),設(shè)
AP
BP
=
BP
AB
=k,則k就是黃金比,并且k≈0.618.
精英家教網(wǎng)
(1)以圖1中的AP為底,BP為腰得到等腰△APB(如圖2),等腰△APB即為黃金三角形,黃金三角形的定義為:滿足
=
底+腰
≈0.618的等腰三角形是黃金三角形;類似地,請你給出黃金矩形的定義:
 
;
(2)如圖1,設(shè)AB=1,請你說明為什么k約為0.618;
(3)由線段的黃金分割點(diǎn)聯(lián)想到圖形的“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成面積為S1和面積為S2的兩部分(設(shè)S1<S2),如果
S1
S2
=
S2
S
,那么稱直線l為該圖形的黃金分割線.(如圖3),點(diǎn)P是線段AB的黃金分割點(diǎn),那么直線CP是△ABC的黃金分割線嗎?請說明理由;
(4)圖3中的△ABC的黃金分割線有幾條?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,點(diǎn)C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時,由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果
S1
S
=
S2
S1
,那么稱直線l為該圖形的黃金分割線.

(1)研究小組猜想:在△ABC中,若點(diǎn)D為AB邊上的黃金分割點(diǎn)(如圖2),則直線CD是△ABC的黃金分割線.你認(rèn)為對嗎?為什么?
(2)研究小組在進(jìn)一步探究中發(fā)現(xiàn):過點(diǎn)C任作一條直線交AB于點(diǎn)E,再過點(diǎn)D作直線DF∥CE,交AC于點(diǎn)F,連接EF(如圖3),則直線EF也是△ABC的黃金分割線.請你說明理由.

查看答案和解析>>

同步練習(xí)冊答案