【題目】有5張不透明的卡片,除正面上的圖案不同外,其他均相同.將這5張卡片背面向上洗勻后放在桌面上.
(1)從中隨機抽取1張卡片,卡片上的圖案是中心對稱圖形的概率為_____.
(2)若從中隨機抽取1張卡片后不放回,再隨機抽取1張,請用畫樹狀圖或列表的方法,求兩次所抽取的卡片恰好都是軸對稱圖形的概率.
【答案】(1);(2)兩次所抽取的卡片恰好都是軸對稱圖形的概率為.
【解析】
(1)先判斷其中的中心對稱圖形,再根據(jù)概率公式求解即得答案;
(2)先畫出樹狀圖得到所有可能的情況,再判斷兩次都是軸對稱圖形的情況,然后根據(jù)概率公式計算即可.
解:(1)中心對稱圖形的卡片是A和D,所以從中隨機抽取1張卡片,卡片上的圖案是中心對稱圖形的概率為,故答案為:;
(2)軸對稱圖形的卡片是B、C、E.
畫樹狀圖如下:
由樹狀圖知,共有20種等可能結果,其中兩次所抽取的卡片恰好都是軸對稱圖形的有6種結果,分別是(B,C)、(B,E)、(C,B)、(C,E)、(E,B)、(E,C),
∴兩次所抽取的卡片恰好都是軸對稱圖形的概率=.
科目:初中數(shù)學 來源: 題型:
【題目】已知三個頂點的坐標分別.
(1)畫出;
(2)以B為位似中心,將放大到原來的2倍,在右圖的網(wǎng)格圖中畫出放大后的圖形△;
(3)寫出點A的對應點的坐標:___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點D,E分別在邊AB,AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.
(1)觀察猜想
圖1中,線段PM與PN的數(shù)量關系是 ,位置關系是 ;
(2)探究證明
把△ADE繞點A逆時針方向旋轉到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;
(3)拓展延伸
把△ADE繞點A在平面內(nèi)自由旋轉,若AD=4,AB=10,請直接寫出△PMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,,平分交于點,過點作交于點,點是線段上的動點,連結并延長分別交,于點、.
(1)求的長.
(2)若點是線段的中點,求的值.
(3)請問當的長滿足什么條件時,在線段上恰好只有一點,使得?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c上部分點的橫坐標x,縱坐標y的對應值如下表:
x | … | -2 | -1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
觀察上表,得出下面結論:①拋物線與x軸的一個交點為(3,0); ②函數(shù)y=ax2+bx+C的最大值為6;③拋物線的對稱軸是x=;④在對稱軸左側,y隨x增大而增大.其中正確有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,E是AB的中點,AD//EC,∠AED=∠B.
(1)求證:△AED≌△EBC;
(2)當AB=6時,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C城市在A城市正東方向,現(xiàn)計劃在A、C兩城市間修建一條高速鐵路(即線段AC),經(jīng)測量,森林保護區(qū)的中心P在城市A的北偏東60°方向上,在線段AC上距A城市150km的B處測得P在北偏東30°方向上,已知森林保護區(qū)是以點P為圓心,120km為半徑的圓形區(qū)域,請問計劃修建的這條高速鐵路是否穿越保護區(qū),為什么?(參考數(shù)據(jù):≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,BD的垂直平分線交AD于E,交BC于F,連接BE 、DF.
(1)判斷四邊形BEDF的形狀,并說明理由;
(2)若AB=8,AD=16,求BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com