【題目】在一次社會調(diào)查活動中,小華收集到某“健步走運動”團隊中20名成員一天行走的步數(shù),記錄如下:
5640 | 6430 | 6520 | 6798 | 7325 |
8430 | 8215 | 7453 | 7446 | 6754 |
7638 | 6834 | 7326 | 6830 | 8648 |
8753 | 9450 | 9865 | 7290 | 7850 |
對這20個數(shù)據(jù)按組距1000進行分組,并統(tǒng)計整理,繪制了如下尚不完整的統(tǒng)計圖表:
步數(shù)分組統(tǒng)計表
組別 | 步數(shù)分組 | 頻數(shù) |
A | 5500≤x<6500 | 2 |
B | 6500≤x<7500 | 10 |
C | 7500≤x<8500 | m |
D | 8500≤x<9500 | 3 |
E | 9500≤x<10500 | n |
請根據(jù)以上信息解答下列問題:
(1)填空:m= , n=
(2)補全頻數(shù)發(fā)布直方圖;
(3)這20名“健步走運動”團隊成員一天行走步數(shù)的中位數(shù)落在組;
(4)若該團隊共有120人,請估計其中一天行走步數(shù)不少于7500步的人數(shù).
【答案】
(1)4;4
(2)
如圖所示:
(3)B
(4)
解:一天行走步數(shù)不少于7500步的人數(shù)是:120× =48(人).
答:估計一天行走步數(shù)不少于7500步的人數(shù)是48人
【解析】解:(1)m=4,n=1.
故答案是:4,4;(3)行走步數(shù)的中位數(shù)落在B組,
故答案是:B;
(1)根據(jù)題目中的數(shù)據(jù)即可直接確定m和n的值;
(2)根據(jù)(1)的結果即可直接補全直方圖;
(3)根據(jù)中位數(shù)的定義直接求解;
(4)利用總人數(shù)乘以對應的比例即可求解.本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力.利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在△ABC中,∠C=90°,AC=BC,過點C在△ABC外作直線MN,AM⊥MN于M,BN⊥MN于N。
(1)求證:MN=AM+BN;
(2)若過點C在△ABC內(nèi)作直線MN,AM⊥MN于M,BN⊥MN于N,則AM、BN與MN之間有什么關系?請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某車間計劃加工360個零件,由于技術上的改進,提高了工作效率,每天比原計劃多加工20%,結果提前10天完成任務,求原計劃每天能加工多少個零件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若兩條拋物線的頂點相同,則稱它們?yōu)椤坝押脪佄锞”,拋物線C1:y1=﹣2x2+4x+2與C2:u2=﹣x2+mx+n為“友好拋物線”.
(1)求拋物線C2的解析式.
(2)點A是拋物線C2上在第一象限的動點,過A作AQ⊥x軸,Q為垂足,求AQ+OQ的最大值.
(3)設拋物線C2的頂點為C,點B的坐標為(﹣1,4),問在C2的對稱軸上是否存在點M,使線段MB繞點M逆時針旋轉(zhuǎn)90°得到線段MB′,且點B′恰好落在拋物線C2上?若存在求出點M的坐標,不存在說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校準備購進一批節(jié)能燈,已知1只A型節(jié)能燈和3只B型節(jié)能燈共需26元;3只A型節(jié)能燈和2只B型節(jié)能燈共需29元.
(1)求一只A型節(jié)能燈和一只B型節(jié)能燈的售價各是多少元;
(2)學校準備購進這兩種型號的節(jié)能燈共50只,并且A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈數(shù)量的3倍,請設計出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班“數(shù)學興趣小組”對函數(shù)y=x2﹣2|x|的圖象和性質(zhì)進行了探究,探究過程如下,請補充完整.
(1)自變量x的取值范圍是全體實數(shù),x與y的幾組對應值列表如下:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | m | ﹣1 | 0 | ﹣1 | 0 | 3 | … |
其中,m= .
(2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標系中描點,并畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分.
(3)觀察函數(shù)圖象,寫出兩條函數(shù)的性質(zhì).
(4)進一步探究函數(shù)圖象發(fā)現(xiàn):
①函數(shù)圖象與x軸有個交點,所以對應的方程x2﹣2|x|=0有個實數(shù)根;
②方程x2﹣2|x|=2有個實數(shù)根;
③關于x的方程x2﹣2|x|=a有4個實數(shù)根時,a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形ABCD中,BC>AB,∠BAD的平分線AF與BD、BC分別交于點E、F,點O是BD的中點,直線OK∥AF,交AD于點K,交BC于點G.
(1)求證:①△DOK≌△BOG;②AB+AK=BG;
(2)若KD=KG,BC=4﹣ .
①求KD的長度;
②如圖2,點P是線段KD上的動點(不與點D、K重合),PM∥DG交KG于點M,PN∥KG交DG于點N,設PD=m,當S△PMN= 時,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,E是AC邊上的一點,且AE=AB,∠BAC=2∠CBE,以AB為直徑作⊙O交AC于點D,交BE于點F.
(1)求證:BC是⊙O的切線;
(2)若AB=8,BC=6,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com