作業(yè)寶如圖,以∠B為一個內(nèi)角的三角形有


  1. A.
    2個
  2. B.
    3個
  3. C.
    4個
  4. D.
    5個
C
分析:根據(jù)相鄰兩邊組成的角叫做三角形的內(nèi)角可得答案.
解答:以∠B為一個內(nèi)角的三角形有△EBD,△ABD,△EBC,△ABC,
故選:C.
點(diǎn)評:此題主要考查了三角形,關(guān)鍵是掌握三角形內(nèi)角的定義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直角坐標(biāo)系內(nèi)的梯形AOBC(O為原點(diǎn)),AC∥OB,OC⊥BC,OA=2,AC,OB的長是關(guān)于x的方程x2-(k+2)x+5=0的兩個根,且S△AOC:S△BOC=1:5.
(1)填空:0C=
 
,k=
 
;
(2)求經(jīng)過O,C,B三點(diǎn)的拋物線的解析式;
(3)AC與拋物線的另一個交點(diǎn)為D,動點(diǎn)P,Q分別從O,D同時出發(fā),都以每秒1個單位的速度運(yùn)動,其中點(diǎn)P沿OB由O→B運(yùn)動,點(diǎn)Q沿DC由D→C運(yùn)動,過點(diǎn)Q作QM⊥CD交BC于點(diǎn)M,連接PM,設(shè)動點(diǎn)運(yùn)動時間為t秒,請你探索:當(dāng)t為何值時,△PMB是直角三角形.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、如圖1,P為Rt△ABC所在平面內(nèi)任意一點(diǎn)(不在直線AC上),∠ACB=90°,M為AB邊中點(diǎn).
操作:以PA、PC為鄰邊作平行四邊形PADC,連接PM并延長到點(diǎn)E,使ME=PM,連接DE.
(1)請你利用圖2,選擇Rt△ABC內(nèi)的任意一點(diǎn)P按上述方法操作;
(2)經(jīng)歷(1)之后,觀察兩圖形,猜想線段DE和線段BC之間有怎樣的數(shù)量和位置關(guān)系?請選擇其中的一個圖形證明你的猜想;
(3)觀察兩圖,你還可得出和DE相關(guān)的什么結(jié)論?請直接寫出.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

24、閱讀下列材料,然后回答文后問題.
如圖,在n邊形內(nèi)任取一點(diǎn)O,并把O與各頂點(diǎn)連接起來,共構(gòu)成n個三角形,這n個三角形的內(nèi)角和為n•180°,再減去以點(diǎn)O為頂點(diǎn)的一個周角,就可以得到n邊形的內(nèi)角和為(n-2)•180°.
回答:
(1)這種方法是將
多邊形
問題轉(zhuǎn)化為
三角形
問題來解決的,這種轉(zhuǎn)化是
化歸
思想的體現(xiàn),也正是解決
多邊形
問題的基本思想;
(2)若在n邊形的一邊上或外部任取一點(diǎn)O,并把O與各頂點(diǎn)連接起來,那么如何說明n邊形的內(nèi)角和為(n-2)•180°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖,在4×4的正方形網(wǎng)格中,每個小正方形的邊長都是1,我們把線段的交點(diǎn)叫格點(diǎn),請畫一個以AB為一個邊的平行四邊形ABCD,其中A,B,C,D都是格點(diǎn).

(2)在給定的圖形內(nèi)作一條折線AB1C1D1E,使AB1⊥AB,B1C1⊥BC,C1D1⊥CD,D1E⊥DE,且A,B,C,D,E,B1,C1,D1都是格點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

定義:在平面內(nèi),我們把既有大小又有方向的量叫做平面向量。平面向量可以用有向線段表示,有向線段的長度表示向量的大小,有向線段的方向表示向量的方向。其中大小相等,方向相同的向量叫做相等向量。

如以正方形的四個頂點(diǎn)中某一點(diǎn)為起點(diǎn),另一個頂點(diǎn)為終點(diǎn)作向量,可以作出8個不同

的向量:、、、 、、(由于是相等向量,因此只算一個)。

⑴ 作兩個相鄰的正方形(如圖)。以其中的一個頂點(diǎn)為起點(diǎn),另一個頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個數(shù)記為,試求的值;

 

 


⑵ 作個相鄰的正方形(如圖)“一字型”排開。以其中的一個頂點(diǎn)為起點(diǎn),另一個頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個數(shù)記為,試求的值;

                                                           

共n個正方形

⑶ 作個相鄰的正方形(如圖)排開。以其中的一個頂點(diǎn)為起點(diǎn),另一個頂點(diǎn)為終點(diǎn)作向量, 可以作出不同向量的個數(shù)記為,試求的值;

                                    

⑷ 作個相鄰的正方形(如圖四)排開。以其中的一個頂點(diǎn)為起點(diǎn),另一個頂點(diǎn)為終點(diǎn)作向量, 可以作出不同向量的個數(shù)記為,試求的值。

m

個正方形相連

 
 


查看答案和解析>>

同步練習(xí)冊答案