【題目】如圖所示,A、B兩地相距50千米,阿杜于某日下午1時(shí)騎自行車從A地出發(fā)駛往B地,浩浩也于同日下午騎摩托車按路線從A地出發(fā)駛往B地,如圖所示,圖中的折線PQR和線段MN分別表示阿杜和浩浩所行駛的路程S和時(shí)間t的關(guān)系:
根據(jù)圖象回答下列問(wèn)題:
(1)阿杜和浩浩哪一個(gè)出發(fā)的更早?早出發(fā)多長(zhǎng)時(shí)間?
(2)浩浩騎摩托車的速度和阿杜騎自行車在全程的平均速度分別是多少?
(3)請(qǐng)你根據(jù)圖象上的數(shù)據(jù),求出浩浩出發(fā)用多長(zhǎng)時(shí)間就追上阿杜?
【答案】(1)阿杜出發(fā)的更早,早出發(fā)1小時(shí);(2)浩浩的速度 是50千米/小時(shí),
阿杜的平均速度是12.5千米/小時(shí);(3)0.5小時(shí).
【解析】
(1)讀圖可知;
(2)從圖中得:阿杜和浩浩所走的路程都是50千米,阿杜一共用了4小時(shí),浩浩一共用了1小時(shí),根據(jù)速度= ,代入計(jì)算得出;
(3)從圖中得:阿杜在走完全程時(shí),前1小時(shí)速度為20千米/小時(shí),從第2小時(shí)開始,速度為 =10千米/小時(shí),因此設(shè)浩浩出發(fā)x小時(shí)就追上甲,則從圖中看,是在阿杜速度為10千米/小時(shí)時(shí)與浩浩相遇,所以阿杜的路程為20+10x,浩浩的路程為50x,列方程解出即可.
解:(1)阿杜下午1時(shí)出發(fā),浩浩下午2時(shí)出發(fā),
所以阿杜出發(fā)的更早,早出發(fā)1小時(shí);
(2)浩浩的速度= =50(千米/小時(shí)),
阿杜的平均速度= =12.5(千米/小時(shí));
(3)設(shè)浩浩出發(fā)x小時(shí)就追上阿杜,
根據(jù)題意得:50x=20+10x,
x=0.5,
答:浩浩出發(fā)0.5小時(shí)就追上阿杜.
故答案為:(1)阿杜出發(fā)的更早,早出發(fā)1小時(shí);(2)浩浩的速度 是50千米/小時(shí),
阿杜的平均速度是12.5千米/小時(shí);(3)0.5小時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明從家騎車上學(xué),先勻速上坡到達(dá)地后再勻速下坡到達(dá)學(xué)校,所用的時(shí)間與路程如圖所示,如果返回時(shí),上、下坡速度仍然保持不變,那么他從學(xué);氐郊倚枰臅r(shí)間是( )
A.9分鐘B.12分鐘C.8分鐘D.10分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)D為等腰直角△ABC內(nèi)一點(diǎn),∠CAD=∠CBD=15o,E為AD延長(zhǎng)線上的一點(diǎn),且CE=CA,若點(diǎn)M在DE上,且DC=DM。則下列結(jié)論:①∠ADB=120°;②△ADC≌△BDC;③線段DC所在的直線垂直平分AB;④ME=BD;正確的有( )
A. 1個(gè)B. 4個(gè)C. 2個(gè)D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某開發(fā)區(qū)有一塊四邊形的空地,如圖所示,現(xiàn)計(jì)劃在空地上種植草皮,經(jīng)測(cè)量,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,問(wèn)要多少投入?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P在一次函數(shù)y=kx+b(k,b為常數(shù),且k<0,b>0)的圖象上,將點(diǎn)P向左平移1個(gè)單位,再向上平移2個(gè)單位得到點(diǎn)Q,點(diǎn)Q也在該函數(shù)y=kx+b的圖象上.
(1)k的值是;
(2)如圖,該一次函數(shù)的圖象分別與x軸、y軸交于A,B兩點(diǎn),且與反比例函數(shù)y= 圖象交于C,D兩點(diǎn)(點(diǎn)C在第二象限內(nèi)),過(guò)點(diǎn)C作CE⊥x軸于點(diǎn)E,記S1為四邊形CEOB的面積,S2為△OAB的面積,若 = ,則b的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圖1是AD∥BC的一張紙條,按圖1→圖2→圖3,把這一紙條先沿EF折疊并壓平,再沿BF折疊并壓平,若圖3中∠CFE=18°,則圖2中∠AEF的度數(shù)為( 。
A.120°B.108°C.126°D.114°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰三角形ABC中,AB=AC,AH⊥BC,點(diǎn)E是AH上一點(diǎn),延長(zhǎng)AH至點(diǎn)F,使FH=EH.
(1)求證:四邊形EBFC是菱形;
(2)如果∠BAC=∠ECF,求證:AC⊥CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD是△ABC的角平分線,DE⊥AB,DF⊥AC,垂足分別為E,F,則下列四個(gè)結(jié)論:①AD上任意一點(diǎn)到點(diǎn)C,B的距離相等;②AD上任意一點(diǎn)到AB,AC的距離相等;③BD=CD,AD⊥BC;④∠BDE=∠CDF.其中正確的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E在BC上,四邊形EFGB也是正方形,以B為圓心,BA長(zhǎng)為半徑畫 ,連結(jié)AF,CF,則圖中陰影部分面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com