【題目】觀察算式:

;;……

(1)請根據(jù)你發(fā)現(xiàn)的規(guī)律填空:7×9+1=________2

(2)用含n的等式表示上面的規(guī)律:________;

(3)用找到的規(guī)律解決下面的問題:計算:

【答案】(1)8;(2)(n-1)×(n+1)+1=n2;(3).

【解析】

(1)由題意得:第一個數(shù)字是連續(xù)的正整數(shù),第二個數(shù)字比第一個數(shù)字大2,它們的積加1等于這兩數(shù)之間的數(shù)的平方;

(2)根據(jù)(1)中的規(guī)律得結(jié)論;

(3)首先將括號里進行通分,再將規(guī)律代入后約分可得結(jié)果.

(1)1×3+1=4=22;2×4+1=9=32;3×5+1=16=42;4×6+1=25=52,

5×7+1=36=62,6×8+1=49=72,7×9+1=64=82,

故答案為,8;

(2)觀察,發(fā)現(xiàn):1×3+1=4=22;2×4+1=9=32;3×5+1=16=42;4×6+1=25=52,…,

∴第n個等式為:n(n+2)+1=(n+1)2

故答案為:n(n+2)+1=(n+1)2,

(3)

=×××…×

=×××…×,

=2×

=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

(1)求出△ABC的面積;

(2)在圖中作出△ABC關于y軸的對稱圖形△A1B1C1;

(3)寫出點A1,B1,C1的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖A在數(shù)軸上所對應的數(shù)為﹣2

1)點B在點A右邊距A4個單位長度,求點B所對應的數(shù);

2)在(1)的條件下,點A以每秒2個單位長度沿數(shù)軸向左運動,點 B 以每秒2個單位長度沿數(shù)軸向右運動,當點A運動到﹣6所在的點處時,求AB兩點間距離.

3)在2)的條件下,現(xiàn)A點靜止不動,B點再以每秒2個單位長度沿數(shù)軸向左運動時,經(jīng)過多長時間A,B兩點相距4個單位長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了創(chuàng)建全國衛(wèi)生城市,某社區(qū)要清理一個衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車運送,兩車各運12趟可完成,需支付運費4800元.已知甲、乙兩車單獨運完此堆垃圾,乙車所運趟數(shù)是甲車的2倍,且乙車每趟運費比甲車少200元.

(1)求甲、乙兩車單獨運完此堆垃圾各需運多少趟?

(2)若單獨租用一臺車,租用哪臺車合算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算

(1)-34+(-8)-5-(-23)

(2)

(3)

(4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市居民使用自來水按如下標準收費(水費按月繳納):

(1)當a=2時,某用戶一個月用了 28m3,求該用戶這個月應繳納的水費;

(2)設某戶月用水量為m立方米, m>20,則該用戶應繳納的的水費為________(用含 a、m的整式表示);

(3)當a=2,甲、乙兩用戶一個月共用水 40m3,已知甲用戶繳納的水費超過了24,設甲用戶這個月用水xm3,試求甲、乙兩用戶一個月共繳納的水費(用含 x的整式表示)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,用三種大小不等的正方形①②③和個缺角的正方形拼成一個長方形ABCD(不重疊且沒有縫隙),若GHa,GKa+1,BFa﹣2

(1)試用含a的代數(shù)式表示:正方形②的邊長CM的長=   ,正方形③的邊長DM的長=   ;

(2)求長方形ABCD的周長(用含a的代數(shù)式表示);并求出當a=3時,長方形周長的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】12分)某中學組織學生去福利院慰問,在準備禮品時發(fā)現(xiàn),購買1個甲禮品比購買1個乙禮品多花40元,并且花費600元購買甲禮品和花費360元購買乙禮品的數(shù)量相等.

(1)求甲、乙兩種禮品的單價各為多少元?

(2)學校準備購買甲、乙兩種禮品共30個送給福利院的老人,要求購買禮品的總費用不超過2000元,那么最多可購買多少個甲禮品?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】光明中學有兩塊邊長為x米的正方形空地,現(xiàn)設想按兩種方式種植草皮,方式一:如圖①,在正方形空地上留兩條寬為2m米的路,其余種植草皮;方式二:如圖②,在正方形空地四周各留一塊邊長為m米的正方形空地植樹,其余種植草皮.學校準備兩種方式都用5000元購進草皮.

(1)寫出按圖①②兩種方式購買草皮的單價;

(2)x=14,m=2時,求按兩種方式購買草皮的單價各是多少(結(jié)果均保留整數(shù)).

查看答案和解析>>

同步練習冊答案