【題目】如圖,AC平分∠BAD,∠B+∠D180°CEAD于點(diǎn)E,AD12 cmAB7 cm,求DE的長(zhǎng)度.

【答案】2.5cm

【解析】

CCFAB的延長(zhǎng)線于點(diǎn)F,由條件可證△AFC≌△AEC,得到CF=CE.再由條件∠ABC+D=180°,由△FBC≌△EDC,由全等的性質(zhì)可得BF=ED,問題可得解.

證明:如圖,


CCFAB的延長(zhǎng)線于點(diǎn)F
AC平分∠BAD,
∴∠FAC=EAC,
CEAD,CFAB,
∴∠BFC=CED=90°,
在△AFC和△AEC中,

∴△AFC≌△AEC,
AF=AE,CF=CE,
∵∠ABC+D=180°,∠ABC+FBC=180°
∴∠FBC=EDC,
∴△FBC≌△EDC
BF=ED,
AB+AD=AE+ED+AF-BF=2AE,
AD=12cm,AB=7cm,
19=2AE,
AE=9.5cm,
DE=AD-AE=12-9.5=2.5cm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AEBCE,AFCDF,且∠EAF=60°,BE=2cm,DF=3cm,試求平行四邊形ABCD的周長(zhǎng)及面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,MN分別是BC、DC的中點(diǎn),AM4,AN3,且∠MAN60°,則AB的長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從三角形一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,若分得的兩個(gè)小三角形中一個(gè)三角形為等腰三角形,另一個(gè)三角形的三個(gè)內(nèi)角與原來三角形的三個(gè)內(nèi)角分別相等,則稱這條線段叫做這個(gè)三角形的等角分割線

例如,等腰直角三角形斜邊上的高就是這個(gè)等腰直角三角形的一條等角分割線

(1)如圖1,在△ABC中,D是邊BC上一點(diǎn),若∠B=30°,∠BAD=∠C=40°,求證: AD△ABC等角分割線;

(2)如圖2△ABC中,∠C=90°,∠B=30°;

畫出△ABC等角分割線,寫出畫法并說明理由;

BC=3,求出中畫出的等角分割線的長(zhǎng)度.

(3)△ABC中,∠A=24°,若△ABC存在等角分割線”CD,直接寫出所有符合要求的∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠C=90°,∠B=30°,以A為圓心、任意長(zhǎng)為半徑畫弧分別交AB,AC于點(diǎn)MN,再分別以M,N為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,連接AP并延長(zhǎng)交BC于點(diǎn)D,給出下列說法:①DM=DN;②∠ADC=60°;③點(diǎn)DAB的中垂線上;④SDAC:SABC=1:3,其中正確的個(gè)數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市綠化部門決定利用現(xiàn)有的不同種類花卉搭配園藝造型,擺放于城區(qū)主要大道的兩側(cè)A、B兩種園藝造型均需用到杜鵑花,A種造型每個(gè)需用杜鵑花25盆,B種造型每個(gè)需用杜鵑花35盆,解答下列問題:

(1)已知人民大道兩側(cè)搭配的A、B兩種園藝造型共60個(gè),恰好用了1700盆杜鵑花,A、B兩種園藝造型各搭配了多少個(gè)?

(2)如果搭配一個(gè)A種造型的成本W與造型個(gè)數(shù)的關(guān)系式為:W=100―x (0<x<50),搭配一個(gè)B種造型的成本為80現(xiàn)在觀海大道兩側(cè)也需搭配A、B兩種園藝造型共50個(gè),要求每種園藝造型不得少于20個(gè),并且成本總額y(元)控制在4500元以內(nèi). 以上要求能否同時(shí)滿足?請(qǐng)你通過計(jì)算說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B兩點(diǎn)的坐標(biāo)分別為(0,6),(0,3),點(diǎn)Px軸正半軸上一動(dòng)點(diǎn),過點(diǎn)AAP的垂線,過點(diǎn)BBP的垂線,兩垂線交于點(diǎn)Q,連接PQ,M為線段PQ的中點(diǎn).

(1)求證:A、B、P、Q四點(diǎn)在以M為圓心的同一個(gè)圓上;

(2)當(dāng)⊙Mx軸相切時(shí),求點(diǎn)Q的坐標(biāo);

(3)當(dāng)點(diǎn)P從點(diǎn)(2,0)運(yùn)動(dòng)到點(diǎn)(3,0)時(shí),請(qǐng)直接寫出線段QM掃過圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點(diǎn)邊上(端點(diǎn)除外)的一個(gè)動(dòng)點(diǎn),過點(diǎn)作直線.設(shè)的平分線于點(diǎn),交的外角平分線于點(diǎn),連接、.那么當(dāng)點(diǎn)運(yùn)動(dòng)到何處時(shí),四邊形是矩形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是邊長(zhǎng)為6的等邊三角形,PAC邊上一動(dòng)點(diǎn),由AC運(yùn)動(dòng)(與A、C不重合),QCB延長(zhǎng)線上一動(dòng)點(diǎn),與點(diǎn)P同時(shí)以相同的速度由BCB延長(zhǎng)線方向運(yùn)動(dòng)(Q不與B重合),過PPE⊥ABE,連接PQABD.

(1)AE=1時(shí),求AP的長(zhǎng);

(2)當(dāng)∠BQD=30°時(shí),求AP的長(zhǎng);

(3)在運(yùn)動(dòng)過程中線段ED的長(zhǎng)是否發(fā)生變化?如果不變,求出線段ED的長(zhǎng);如果發(fā)生變化,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案