【題目】如圖,直線x軸交于點B,與y軸交于點A,以線段AB為邊,在第一象限內(nèi)作正方形ABCD,點C落在雙曲線)上,將正方形ABCD沿x軸負(fù)方向平移a個單位長度,使點D恰好落在雙曲線)上的點D1處,則a=

【答案】2

【解析】

試題對于直線,令x=0,得到y=3;令y=0,得到x=1,即A0,3),B10),過CCE⊥x軸,交x軸于點E,過POF∥x軸,過DDF垂直于OF,如圖所示,四邊形ABCD為正方形,∴AB=BO,∠ABO=90°∴∠OAB+∠ABO=90°,∠ABO+∠EBO=90°∴∠OAB=∠EBO,在△AOB△BEO中,∵∠AOB=∠BEO=90°,∠OAB=∠EBOAB=BO,∴△AOB≌△EBOAAS),∴BE=OA=3,OE=OB=1∴C4,1),把C坐標(biāo)代入反比例解析式得:k=4,即,同理得到△DFO≌△AOB,∴DF=OA=3,OF=OB=1∴D3,4),把y=4代入反比例解析式得:x=1,則將正方形ABCD沿x軸負(fù)方向平移2個單位長度,使點D恰好落在雙曲線)上的點D1處,即a=2,故答案為:2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,在水塔O的東北方向32m處有一抽水站A,在水塔的東南方向24m處有一建筑工地B,在AB間建一條直水管,求水管AB的長;

(2)如圖2,在△ABC中,D是BC邊上的點,已知AB=13,AD=12,AC=15,BD=5,求DC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,銳角△ABC的兩條高BE、CD相交于點O,且OBOC,A=60°.

(1)求證:△ABC是等邊三角形;

(2)判斷點O是否在∠BAC的平分線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點O為對角線AC、BD的交點,點E為BC上一點,連接EO,并延長交AD于點F,則圖中全等三角形共有(
A.3對
B.4對
C.5對
D.6對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△AOB中,OA=OB,∠AOB=50°,將△AOB繞O點順時針旋轉(zhuǎn)30°,得到△COD,OC交AB于點F,CD分別交AB、OB于點E、H.求證:EF=EH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知函數(shù)的圖象與反比例函數(shù)的圖象的一個交點為A,則= ________

(2)如果滿足,試求代數(shù)式的值.

(3)已知,,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:等腰△OAB在直角坐標(biāo)系中的位置如圖,點A坐標(biāo)為,點B坐標(biāo)為(-6,0).

(1)若將△OAB沿x軸向右平移a個單位,此時點A恰好落在反比例函數(shù)的圖象上,求a的值;

(2)若△OAB繞點O按逆時針方向旋轉(zhuǎn)α度(0<α<360).

①當(dāng)α=30°時,點B恰好落在反比例函數(shù)的圖象上,求k的值;

②問點A、B能否同時落在①中的反比例函數(shù)的圖象上?若能,直接寫出α的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的運算程序中,若開始輸入的x值為48,我們發(fā)現(xiàn)第一次輸出的結(jié)果為24,第二次輸出輸出的結(jié)果為12,…則第2014次輸出的結(jié)果為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】423日是世界讀書日,學(xué)校開展讓書香溢滿校園讀書活動,以提升青少年的閱讀興趣,九年級(1)班數(shù)學(xué)活動小組對本年級600名學(xué)生每天閱讀時間進(jìn)行了統(tǒng)計,根據(jù)所得數(shù)據(jù)繪制了兩幅不完整統(tǒng)計圖(每組包括最小值不包括最大值).九年級(1)班每天閱讀時間在0.5小時以內(nèi)的學(xué)生占全班人數(shù)的8%.根據(jù)統(tǒng)計圖解答下列問題:

1)九年級(1)班有    名學(xué)生;

2)補(bǔ)全直方圖;

3)除九年級(1)班外,九年級其他班級每天閱讀時間在11.5小時的學(xué)生有165人,請你補(bǔ)全扇形統(tǒng)計圖;

4)求該年級每天閱讀時間不少于1小時的學(xué)生有多少人.

查看答案和解析>>

同步練習(xí)冊答案