【題目】1)一種商品有大小兩種包裝,4 大盒、3 小盒共裝 116 瓶;3 大盒、2 小盒共裝 84 瓶,求大盒與小盒每盒各裝多少瓶?

2)一種商品有大中小三種包裝,4 大盒、2 中盒、3 小盒共裝 137 瓶;3 大盒、5 中盒、4 小盒共裝171 瓶,一個顧客買了這種商品大中小各兩盒,請問這個顧客買了這種商品多少瓶?

【答案】(1)20瓶和8;(2)88.

【解析】

(1)設(shè)大盒與小盒每盒分別裝x瓶和y瓶,根據(jù)等量關(guān)系:4大盒、3小盒共裝116瓶;3大盒、2小盒共裝84瓶,列出方程組求解即可

解:(1)設(shè)大盒與小盒每盒分別裝x瓶和y瓶,由題意得:

解得

答:大盒與小盒每盒分別裝20瓶和8瓶.

2)設(shè)大盒、中盒與小盒每盒分別裝x瓶、y瓶和z瓶,由題意得:

+②得:7x+7y+7z=308,則x+y+z=44

所以2x+2y+2z=88

答:這個顧客買了這種商品88瓶.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2020年新型冠狀病毒肺炎疫情肆虐,紅星社區(qū)為了提高社區(qū)居民的身體素質(zhì),鼓勵居民在家鍛煉,特采購了一批跳繩免費(fèi)發(fā)放,已知2根幸福牌跳繩和1根平安牌跳繩共需31元,2根平安牌跳繩和3根幸福牌跳繩共需54元.

1)求幸福牌跳繩和平安牌跳繩的單價;

2)已知該社區(qū)需要采購兩種品牌的跳繩共60根,且平安牌跳繩的數(shù)量不少于幸福牌跳繩數(shù)量的2倍,請設(shè)計出最省錢的購買方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y12x3與雙曲線在第一象限交于點A,與x軸交于點B,過點AACx軸,垂足為C,已知∠BACAOC

1)求AB兩點的坐標(biāo)及k的值;

2)請直接寫出當(dāng)y2y10x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OBCD是邊長為4的正方形,B、D分別在軸負(fù)半軸、軸正半軸上,點E軸的一個動點,連接CE,以CE為邊,在直線CE的右側(cè)作正方形CEFG

1)如圖1,當(dāng)點E與點O重合時,請直接寫出點F的坐標(biāo)為_______,點G的坐標(biāo)為_______

2)如圖2,若點E在線段OD上,且OE=1,求正方形CEFG的面積.

3)當(dāng)點E軸上移動時,點F是否在某條直線上運(yùn)動?如果是,請求出相應(yīng)直線的表達(dá)式;如果不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,點DBC上一點,且AD=DC,過A,B,D三點作⊙O,AE⊙O的直徑,連結(jié)DE

1)求證:AC⊙O的切線;

2)若sinC=,AC=6,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為矩形ABCD對角線的交點,DEAC,CEBD

1試判斷四邊形OCED的形狀,并說明理由;

2)若AB=6,BC=8,求四邊形OCED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知 A-40),B02),C0-3),D20

1)在圖 1 中,畫出四邊形 ABDC,直接寫出四邊形 ABDC 的面積是 .

2)點 E 是直線 AB CD 的交點,求△ACE 的面積.

3)點 P 的坐標(biāo)為(0p),△PAB 的面積大于△PCD 的面積,求 p 的取值范圍.

1 備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某校為了創(chuàng)建書香校園,去年購進(jìn)一批圖書.經(jīng)了解,科普書的單價比文學(xué)書的單價多4元,用12000元購進(jìn)的科普書與用8000元購進(jìn)的文學(xué)書本數(shù)相等.

1)文學(xué)書和科普書的單價各多少錢?

2)今年文學(xué)書和科普書的單價和去年相比保持不變,該校打算用10000元再購進(jìn)一批文學(xué)書和科普書,問購進(jìn)文學(xué)書550本后至多還能購進(jìn)多少本科普書?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,A=40°,ABC的外角∠CBD的平分線BEAC的延長線于點E.

(1)求∠CBE的度數(shù);

(2)過點DDFBE,交AC的延長線于點F,求∠F的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案