如圖,等邊三角形ABC的邊長(zhǎng)為3,點(diǎn)P為BC邊上一點(diǎn),且BP=1,點(diǎn)D為AC邊上一點(diǎn),若∠APD=60°,則CD的長(zhǎng)為    

試題分析:根據(jù)兩角對(duì)應(yīng)相等的兩個(gè)三角形相似,即可證得ABP∽△PCD,然后根據(jù)相似三角形的對(duì)應(yīng)邊的比相等即可求得CD的長(zhǎng).
∵∠APC=∠ABP+∠BAP=60+∠BAP=∠APD+∠CPD=60+∠CPD,
∴∠BAP=∠CPD.
又∵∠ABP=∠PCD=60,
∴ABP∽△PCD.
∴ABCP=BPCD,即
∴CD=
點(diǎn)評(píng):此題難度不大,主要考察學(xué)生找相似三角形和相似三角形的證法及相似三角形的對(duì)應(yīng)邊的相似比間的關(guān)系。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,小明在打網(wǎng)球時(shí),使球恰好能打過(guò)網(wǎng),而且落在離網(wǎng)4米的位置上,則球拍擊球的高度h為     

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在矩形ABCD中,AB=3,BC=4.動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AC向終點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿BA向點(diǎn)A運(yùn)動(dòng),到達(dá)A點(diǎn)后立刻以原來(lái)的速度沿AB返回.點(diǎn)P、Q運(yùn)動(dòng)速度均為每秒1個(gè)單位長(zhǎng)度,當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),點(diǎn)Q也同時(shí)停止.連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為tt >0)秒.

(1)求線段AC的長(zhǎng)度;
(2)當(dāng)點(diǎn)Q從點(diǎn)B向點(diǎn)A運(yùn)動(dòng)時(shí)(未到達(dá)A點(diǎn)),求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)伴隨著PQ兩點(diǎn)的運(yùn)動(dòng),線段PQ的垂直平分線為l
①當(dāng)l經(jīng)過(guò)點(diǎn)A時(shí),射線QPAD于點(diǎn)E,求AE的長(zhǎng);
②當(dāng)l經(jīng)過(guò)點(diǎn)B時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖△ABC中,AB=AC=5,BC=6,D、E分別是邊AB、AC上的兩個(gè)動(dòng)點(diǎn)(D不與A、B重合),且保持DE∥BC,以ED為邊,在點(diǎn)A的異側(cè)作正方形DEFG.
 
(1)試求△ABC的面積;
(2)當(dāng)邊FG與BC重合時(shí),求正方形DEFG的邊長(zhǎng);
(3)設(shè)AD=x,當(dāng)△BDG是等腰三角形時(shí),求出AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在梯形ABCD中,AD∥BC,BA=BC,CA=CD.若BC=10cm,CD=6cm,則AD=  cm;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,點(diǎn)C在線段BD上,AB⊥BD,PD⊥BD,∠B=∠D=90°,AB=3,BC=6,CD=2,則當(dāng)DE=         時(shí),△ABC與△CDE相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列語(yǔ)句正確的是( )
A.有一個(gè)角對(duì)應(yīng)相等的兩個(gè)直角三角形相似
B.如果兩個(gè)圖形位似,那么對(duì)應(yīng)線段平行或在同一條直線直線上
C.兩個(gè)矩形一定相似
D.如果將一個(gè)三角形的各邊長(zhǎng)都擴(kuò)大二倍,則其面積將擴(kuò)大4倍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

小明用自制的直角三角形紙板DEF測(cè)量樹AB的高度.測(cè)量時(shí),使直角邊DF保持水平狀態(tài),其延長(zhǎng)線交AB于點(diǎn)G;使斜邊DE與點(diǎn)A在同一條直線上.測(cè)得邊DF離地面的高度等于1.4m,點(diǎn)DAB的距離等于6m(如圖所示).已知DF = 30cm,EF = 20cm,那么樹AB的高度等于      m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,∠C=90°,AC=8,BC=6。P是AB邊上的一個(gè)動(dòng)點(diǎn)(異于A、B兩點(diǎn)),過(guò)點(diǎn)P分別作AC、BC邊的垂線,垂足為M、N設(shè)AP=x。

(1)在△ABC中,AB=               ;
(2)當(dāng)x=      時(shí),矩形PMCN的周長(zhǎng)是14;
(3)是否存在x的值,使得△PAM的面積、△PBN的面積與矩形PMCN的面積同時(shí)相等?請(qǐng)說(shuō)出你的判斷,并加以說(shuō)明。

查看答案和解析>>

同步練習(xí)冊(cè)答案