【題目】如圖,矩形ABCD中,點P是線段AD上任意一點,點Q為BC上一點,且AP=CQ.
(1)求證:BP=DQ;
(2)若AB=4,且當(dāng)PD=5時四邊形PBQD為菱形.求AD為多少.
【答案】(1)見解析;(2)8.
【解析】
(1)依據(jù)矩形的性質(zhì),通過全等三角形的判定定理判定△ABP≌△QCD,所以BP=DQ.
(2)設(shè)AP=a,AD=5+a.當(dāng)四邊形PBQD是菱形時,PB=PD=5.在直角△ABP中,根據(jù)勾股定理得到AP2+AB2=PB2,即a2+42=52,由此可以求得a,再可得AD的長度.
證明:(1)∵四邊形ABCD是矩形,
∴∠A=∠C=90°,AB=CD,
在Rt△ABP和Rt△QCD中,
∴△ABP≌△QCD(ASA),
∴BP=DQ;
(2)設(shè)AP=a,AD=5+a.
當(dāng)四邊形PBQD是菱形時,PB=PD=5,
在直角△ABP中,根據(jù)勾股定理得到AP2+AB2=PB2,即a2+42=52,
可得:a=3,
所以AD=3+5=8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中有4個點:A(0,2),B(﹣2,﹣2),C(﹣2,2),D(3,3).
(1)在正方形網(wǎng)格中畫出△ABC的外接圓⊙M,圓心M的坐標(biāo)是 ;
(2)若EF是⊙M的一條長為4的弦,點G為弦EF的中點,求DG的最大值;
(3)點P在直線MB上,若⊙M上存在一點Q,使得P、Q兩點間距離小于1,直接寫出點P橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一塊面積為100cm2的正方形紙片.
(1)該正方形紙片的邊長為 cm(直接寫出結(jié)果);
(2)小麗想沿著該紙片邊的方向裁剪出一塊面積為90cm2的長方形紙片,使它的長寬之比為4:3.小麗能用這塊紙片裁剪出符合要求的紙片嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的面積為28,對角線交于點;以、為鄰邊作平行四邊形,對角線交于點;以、為鄰邊作平行四邊形;…依此類推,則平行四邊形的面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,A(0,4),C(3,0),點B在坐標(biāo)軸上,且△ABC的面積為10,則點B的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,我們把橫 、縱坐標(biāo)都是整數(shù)的點叫做整點.已知點
A(0,4),點B是軸正半軸上的整點,記△AOB內(nèi)部(不包括邊界)的整點個數(shù)為m.當(dāng)m=3時,點B的橫坐標(biāo)的所有可能值是 ▲ ;當(dāng)點B的橫坐標(biāo)為4n(n為正整數(shù))時,m= (用含n的代數(shù)式表示.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將幾個小正方形與小長方形拼成一個邊長為(a+b+c)的正方形.
(1)若用不同的方法計算這個邊長為(a+b+c)的正方形面積,就可以得到一個的等式,這個等式可以為 ;
(2)請利用(1)中的等式解答下列問題:
①若三個實數(shù)a,b,c滿足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
②若三個實數(shù)x,y,z滿足2x×4y÷8z=32,x2+4y2+9z2=45,求2xy﹣3xz﹣6yz的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀并回答問題.
求一元二次方程ax2+bx+c=0(a≠0)的根(用配方法).
解:ax2+bx+c=0,
∵a≠0,∴x2+x+=0,第一步
移項得:x2+x=﹣,第二步
兩邊同時加上()2,得x2+x+(____)2=﹣+()2,第三步
整理得:(x+)2=直接開方得x+=±,第四步
∴x=,
∴x1=,x2=,第五步
上述解題過程是否有錯誤?若有,說明在第幾步,指明產(chǎn)生錯誤的原因,寫出正確的過程;若沒有,請說明上述解題過程所用的方法.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com