【題目】點(diǎn)為正方形的邊上任意一點(diǎn),在正方形內(nèi)部做等腰直角.
(1)如圖1,若,則_________(請(qǐng)直接寫(xiě)出答案)
(2)作關(guān)于的對(duì)稱(chēng)點(diǎn),連接交于點(diǎn).
①補(bǔ)全圖形1;
②證明:四邊形ECHF為平行四邊形.
(3)在(2)的條件下,連接,請(qǐng)直接寫(xiě)出和之間的數(shù)量關(guān)系.
【答案】(1);(2)①見(jiàn)解析;②見(jiàn)解析;(3)
【解析】
(1)在中,利用勾股定理求得,再在是等腰直角三角形AEF中利用勾股定理即可求解;
(2)①按照要求補(bǔ)全圖形即可;
②作MN⊥AB,交DC于N,交AB于M,證得△AMF≌△FNE,根據(jù)全等三角形的性質(zhì)證明點(diǎn)F在正方形ABCD的線(xiàn)BD上,設(shè)法證明FH=EC,FH∥EC,從而證明結(jié)論;
(3)根據(jù)②的過(guò)程,利用勾股定理證得 ,,從而得到.
(1)∵四邊形ABCD是正方形,AB=6,EC=2,
∴AB=AD=DC=6,∠ADE=90,
在中,AD= 6,DE=DC-EC=6-2=4,
∴,
∵AEF是等腰直角三角形,且∠AFE=90,
∴AF=EF,
∵,即,
∴;
(2)①補(bǔ)全圖形如圖所示:
②如圖,過(guò)點(diǎn)F作MN⊥AB,交DC于N,交AB于M,連接BD,
∵AB∥CD,MN⊥AB,∠AFE=90,
∴MN⊥CD,
∴∠AFM+∠EFN=90°,∠AFM +∠FAM=90°,
∴∠EFN =∠FAM,
在△AMF和△FNE中,
,
∴△AMF≌△FNE(AAS),
∴AM=FN,MF=EN,
∵四邊形ABCD是正方形,且MN⊥AB,
∴∠BAD=∠ADC=∠AMN=90°,
∴四邊形ADNM是矩形,
∴AM=DN,
∴FN=DN,
又MN⊥CD,
∴∠FDN=45°,
∴點(diǎn)F在正方形ABCD的線(xiàn)BD上,
又F、H關(guān)于BC對(duì)稱(chēng),
∴MF=FP=PH=EN,FP⊥BC,
∴四邊形BPFM是正方形,四邊形PCNF是矩形,
∴FP=NC,PC=FN,
∴FH=EC,
∵F、H關(guān)于BC對(duì)稱(chēng),
∴FH⊥BC,
∵DC⊥BC,
∴FH∥EC,
∴四邊形ECHF為平行四邊形;
(3)由②得MF=FP,
∴,
∵AM=DN=FN,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,在的右倒,平分,平分,,所在直線(xiàn)交于點(diǎn),.
(1)求的度數(shù).
(2)若,求的度數(shù)(用含的代數(shù)式表示).
(3)將線(xiàn)段沿方向平移,使得點(diǎn)在點(diǎn)的右側(cè),其他條件不變,在圖中畫(huà)出平移后的圖形,并判斷的度數(shù)是否發(fā)生改變?若改變,求出它的度數(shù)(用含的式子表示);若不改變,請(qǐng)說(shuō)明理由.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在△ABC中,且∠BAC=70°,AD是△ABC的角平分線(xiàn),點(diǎn)E是AC邊上的一點(diǎn),點(diǎn)F為直線(xiàn)AB上的一動(dòng)點(diǎn),連結(jié)EF,直線(xiàn)EF與直線(xiàn)AD交于點(diǎn)P,設(shè)∠AEF=α°
(1)如圖①,若 DE//AB,則①∠ADE的度數(shù)是_______;
②當(dāng)∠DPE=∠DEP時(shí),∠AEF= _____度:當(dāng)∠PDE=∠PED,∠AEF=_______度;
(2)如圖②,若DE⊥AC,則是否存在這樣的α的值,使得△DPE中有兩個(gè)相等的角?若存在求出α的值;若不存在,說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】水蜜桃是無(wú)錫市陽(yáng)山的特色水果,水蜜桃一上市,水果店的老板用2000元購(gòu)進(jìn)一批水密桃,很快售完;老板又用3300元購(gòu)進(jìn)第二批水蜜桃,所購(gòu)件數(shù)是第一批的倍,但進(jìn)價(jià)比第一批每件多了5元.
(1)第一批水蜜桃每件進(jìn)價(jià)是多少元?
(2)老板以每件65元的價(jià)格銷(xiāo)售第二批水蜜桃,售出80%后,為了盡快售完,剩下的決定打折促銷(xiāo).要使得第二批水密桃的銷(xiāo)售利潤(rùn)不少于288元,剩余的仙桃每件售價(jià)最多打幾折?(利潤(rùn)=售價(jià)-進(jìn)價(jià))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形的頂點(diǎn)在軸上,且,則直線(xiàn)的解析式是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=ax2+bx+1經(jīng)過(guò)點(diǎn)(2,6),且與直線(xiàn)y=x+1相交于A,B兩點(diǎn),點(diǎn)A在y軸上,過(guò)點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C(4,0).
(1)求拋物線(xiàn)的解析式;
(2)若P是直線(xiàn)AB上方該拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PD⊥x軸于點(diǎn)D,交AB于點(diǎn)E,求線(xiàn)段PE的最大值;
(3)在(2)的條件,設(shè)PC與AB相交于點(diǎn)Q,當(dāng)線(xiàn)段PC與BE相互平分時(shí),請(qǐng)求出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩塊等腰直角三角形紙片AOB和COD按圖1所示放置,直角頂點(diǎn)重合在點(diǎn)O處,AB=25,CD=17.保持紙片AOB不動(dòng),將紙片COD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α(0°<α<90°)角度,如圖2所示.
(1)利用圖2證明AC=BD且AC⊥BD;
(2)當(dāng)BD與CD在同一直線(xiàn)上(如圖3)時(shí),求AC的長(zhǎng)和α的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題9分)把代數(shù)式通過(guò)配湊等手段,得到完全平方式,再運(yùn)用完全平方式是非負(fù)性這一性質(zhì)增加問(wèn)題的條件,這種解題方法叫做配方法.配方法在代數(shù)式求值,解方程,最值問(wèn)題等都有著廣泛的應(yīng)用.
例如:①用配方法因式分解:a2+6a+8
原式=a2+6a+9-1
=(a+3)2 –1
=(a+3-1)(a+3+1)
=(a+2)(a+4)
②若M=a2-2ab+2b2-2b+2,利用配方法求M的最小值:
a2-2ab+2b2-2b+2=a2-2ab+b2+b2-2b+1+1
=(a-b)2+(b-1)2 +1
∵(a-b)2≥0,(b-1)2 ≥0
∴當(dāng)a=b=1時(shí),M有最小值1
請(qǐng)根據(jù)上述材料解決下列問(wèn)題:
(1)在橫線(xiàn)上添上一個(gè)常數(shù)項(xiàng)使之成為完全平方式:a 2+4a+ .
(2)用配方法因式分解: a2-24a+143
(3)若M=a2+2a +1,求M的最小值.
(4)已知a2+b2+c2-ab-3b-4c+7=0,求a+b+c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在大小為4×4的正方形網(wǎng)格中,是相似三角形的是( 。
A. ①和② B. ②和③ C. ①和③ D. ②和④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com