【題目】如圖,四幅圖像分別表示變量之間的關(guān)系,請按圖像的順序,將下面的四種情境與之對應(yīng)排序.

a.運動員推出去的鉛球(鉛球的高度與時間的關(guān)系);

b.靜止的小車從光滑的斜面滑下(小車的速度與時間的關(guān)系)

c.一個彈簧由不掛重物到所掛重物的質(zhì)量逐漸增加(彈簧的長度與所掛重物的質(zhì)量的關(guān)系);

d.小明從A地到B地后,停留一段時間,然后按原來的速度原路返回(小明離A地的距離與時間的關(guān)系)

正確的順序是(  )

A. abcd B. abdc C. acbd D. acdb

【答案】D

【解析】

①是拋物線圖象;②是一次函數(shù)圖象;③是分段函數(shù)圖象;④是正比例函數(shù)圖象.

a:運動員推出去的鉛球的運動軌跡是拋物線,即①所顯示的圖形;
b:靜止的小車從光滑的斜面滑下,小車的速度會在0的基礎(chǔ)上,隨著時間的變化越來越快,即④所顯示的圖象;
c:一個彈簧由不掛重物到所掛重物的質(zhì)量逐漸增加,彈簧的長度會隨著所掛重物的質(zhì)量的增加而變長,因為彈簧伸長的長度是在原有彈簧長度的基礎(chǔ)上變化的,故選②;
d:小明從A地到B地這一過程,小明離A地的距離會隨著時間的增長而增加;在“停留一段時間”這個過程中,小明離A地的距離不會變化;在“原速度原路返回”的過程中,小明離A地的距離會隨著時間的增長而減小,一直到回到原地,即③的圖象.
故選D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線l1:y=﹣x2+2x+3與x軸交于點A,B(點A在點B左邊),與y軸交于點C,拋物線l2經(jīng)過點A,與x軸的另一個交點為E(4,0),與y軸交于點D(0,﹣2).

(1)求拋物線l2的解析式;
(2)點P為線段AB上一動點(不與A、B重合),過點P作y軸的平行線交拋物線l1于點M,交拋物線l2于點N.
①當四邊形AMBN的面積最大時,求點P的坐標;
②當CM=DN≠0時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一家商店進行門店升級需要裝修,裝修期間暫停營業(yè),若請甲乙兩個裝修組同時施工,8天可以完成,需付費用共3520元;若先請甲組單獨做6天,再請乙組單獨做12天可以完成,需付費用3480元,問:

1)甲、乙兩組工作一天,商店各應(yīng)付多少錢?

2)已知甲組單獨完成需12天,乙組單獨完成需24天,單獨請哪個組,商店所需費用最少?

3)裝修完畢第二天即可正常營業(yè),且每天仍可盈利200(即裝修前后每天盈利不變),你認為商店應(yīng)如何安排施工更有利?說說你的理由.(可用(1)(2)問的條件及結(jié)論)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把八個等圓按相鄰兩兩外切擺放,其圓心連線構(gòu)成一個正八邊形,設(shè)正八邊形內(nèi)側(cè)八個扇形(無陰影部分)面積之和為S1 , 正八邊形外側(cè)八個扇形(陰影部分)面積之和為S2 , 則 =( )

A.
B.
C.
D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)定義新運算“△”,對于任意有理數(shù)a,b,都有a△b=a2-ab+b,例如:3△5=32-3×5+5=-1,請根據(jù)上述知識解決問題:

(1)化簡:(x-1)△(2+x);

(2)若(1)中的代數(shù)式的值大于6而小于9,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人進行比賽的路程與時間的關(guān)系如圖所示.

(1)這是一場________米比賽;

(2)前一半賽程內(nèi)________的速度較快,最終________贏得了比賽;

(3)兩人第________秒在途中相遇,相遇時距終點________米;

(4)甲在前8秒的平均速度是多少?甲在整個賽程的平均速度是多少?乙在前8秒的平均速度是多少?乙在整個賽程的平均速度是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,∠B的平分線BE與AD交于點E,∠BED的平分線EF與DC交于點F,若AB=9,DF=2FC,則BC= . (結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y= 的圖象在第一象限交于點A(4,3),與y軸的負半軸交于點B,且OA=OB.

(1)求函數(shù)y=kx+b和y= 的表達式;
(2)已知點C(0,5),試在該一次函數(shù)圖象上確定一點M,使得MB=MC,求此時點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算題( 1+ +sin30°;
(1)計算:( 1+ +sin30°;
(2)先化簡,再求值:(m+2)(m﹣2)﹣(m﹣2)2+1,其中m=2.

查看答案和解析>>

同步練習冊答案