【題目】(2017新疆烏魯木齊第15題)如圖,拋物線過點,且對稱軸為直線,有下列結論:
①;②;③拋物線經過點與點,則;④無論取何值,拋物線都經過同一個點;⑤,其中所有正確的結論是__________.
【答案】②④⑤.
【解析】
由圖象可知,拋物線開口向上,則a>0,
頂點在y軸右側,則b<0,
拋物線與y軸交于負半軸,則c<0,
∴abc>0,故①錯誤;
∵拋物線y=ax2+bx+c過點(﹣1,0),且對稱軸為直線x=1,
∴拋物線y=ax2+bx+c過點(3,0),
∴當x=3時,y=9a+3b+c=0,
∵a>0,
∴10a+3b+c>0,故②正確;
∵對稱軸為x=1,且開口向上,
∴離對稱軸水平距離越大,函數值越大,
∴y1<y2,故③錯誤;
當x=﹣時,y=a(﹣)2+b(﹣)+c=,
∵當x=﹣1時,y=a﹣b+c=0,
∴當x=﹣時,y=a(﹣)2+b(﹣)+c=0,
即無論a,b,c取何值,拋物線都經過同一個點(﹣,0),故④正確;
x=m對應的函數值為y=am2+bm+c,
x=1對應的函數值為y=a+b+c,
又∵x=1時函數取得最小值,
∴am2+bm+c≥a+b+c,即am2+bm≥a+b,
∵b=﹣2a,
∴am2+bm+a≥0,故⑤正確;
故答案為②④⑤.
科目:初中數學 來源: 題型:
【題目】某某用戶培育了甲乙兩種番茄,各隨機抽取了10棵幼苗,測試高度如下(單位:cm)
甲:10,9,10,10,13,8,7,12,10,11
乙:9,10,8,11,10,11,10,9,10,12
你認為哪種番茄長得比較整齊?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與y軸的一個交點坐標為(0,3),其部分圖象如圖所示,下列結論:①abc<0;②4a+c>0;③方程ax2+bx+c=3的兩個根是x1=0,x2=2;④方程ax2+bx+c=0有一個實根大于2;⑤當x<0時,y隨x增大而增大.其中結論正確的個數是( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在半中,P是直徑AB上一動點,且,過點P作交半于點C,P為垂足,連接BC,過點P作于點D.
小明根據學習函數的經驗,對線段AP,CP,PD的長度之間的關系進行了探究.下面是小明的探究過程,請補充完整:
(1)對于動點P在AB上的不同位置,畫圖,測量,得到了線段AP,CP,PD的長度的幾組值,如下表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | 位置8 | 位置9 | 位置10 | |
0.37 | 0.88 | 1.59 | 2.01 | 2.44 | 3.00 | 3.58 | 4.37 | 5.03 | 5.51 | |
1.45 | 2.12 | 2.65 | 2.83 | 2.95 | 3.00 | 2.95 | 2.67 | 2.21 | 1.65 | |
1.40 | 1.96 | 2.27 | 2.31 | 2.27 | 2.13 | 1.87 | 1.39 | 0.89 | 0.48 |
在AP,CP,PD的長度這三個量中,確定________的長度是自變量, ________的長度和________的長度都是這個自變量的函數;
(2)在同一平面直角坐標系xOy中,畫出(1)中所確定的函數的圖象;
(3)結合函數圖象,解決問題:當時,AP的長度約為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在反比例函數y= 的圖象上有一動點A,連接AO并延長交圖象的另一支于點B,在第二象限內有一點C,滿足AC=BC,當點A運動時,點C始終在函數y= 的圖象上運動,若tan∠CAB=2,則k的值為( )
A. ﹣3 B. ﹣6 C. ﹣9 D. ﹣12
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=x2+mx+n經過點A(3,0)、
B(0,-3),點P是直線AB上的動點,過點P作x軸的垂線交拋物線于點M,設點P的橫
坐標為t.
(1)分別求出直線AB和這條拋物線的解析式.
(2)若點P在第四象限,連接AM、BM,當線段PM最長時,求△ABM的面積.
(3)是否存在這樣的點P,使得以點P、M、B、O為頂點的四邊形為平行四邊形?若存在,請直接寫出點P的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB.添加一個條件,不能使四邊形DBCE成為矩形的是( )
(A)AB=BE (B)BE⊥DC (C)∠ADB=90° (D)CE⊥DE
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在⊙O中按如下步驟作圖:
(1)作⊙O的直徑AD;
(2)以點D為圓心,DO長為半徑畫弧,交⊙O于B,C兩點;
(3)連接DB,DC,AB,AC,BC.
根據以上作圖過程及所作圖形,下列四個結論中錯誤的是( )
A.∠ABD=90°B.∠BAD=∠CBDC.AD⊥BCD.AC=2CD
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com