【題目】“垃圾分類”越來越受到人們的關注,我市某中學對部分學生就“垃圾分類”知識的了解程度,采用隨機抽樣調查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.根據(jù)圖中信息回答下列問題:
(1)接受問卷調查的學生共有 人,條形統(tǒng)計圖中的值為 ;
(2)扇形統(tǒng)計圖中“了解很少”部分所對應扇形的圓心角的度數(shù)為 ;
(3)若從對垃圾分類知識達到“非常了解”程度的2名男生和2名女生中隨機抽取2人參加垃圾分類知識競賽,請用列表或畫樹狀圖的方法,求恰好抽到1名男生和1名女生的概率.
【答案】(1)60,10;(2)96°;(3)
【解析】
(1)根據(jù)基本了解的人數(shù)和所占的百分比可求出總人數(shù),m=總人數(shù)-非常了解的人數(shù)-基本了解的人數(shù)-了解很少的人數(shù);
(2)先求出“了解很少”所占總人數(shù)的百分比,再乘以360°即可;
(3)采用列表法或樹狀圖找到所有的情況,再從中找出所求的1名男生和1名女生的情況,再由概率等于所求情況數(shù)與總情況數(shù)之比來求解.
(1)
(2)“了解很少”所占總人數(shù)的百分比為
所以所對的圓心角的度數(shù)為
(3)
由表格可知,共有12種結果,其中1名男生和1名女生的有8種可能,所以恰好抽到1名男生1名女生的概率為
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=﹣x2+bx+c經(jīng)過點C(0,3),與x軸交于A,B兩點,點A(﹣1,0).
(I)求該拋物線的解析式;
(Ⅱ)D為拋物線對稱軸上一點,當△ACD的周長最小時,求點D的坐標;
(Ⅲ)在拋物線上是否存在一點P,使CP恰好將以A,B,C,P為頂點的四邊形的面積分為相等的兩部分?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點,AC交DE于點F.
(1)求證:AC2=ABAD;
(2)求證:CE∥AD;
(3)若AD=5,AB=6,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在解方程(x2﹣2x)2﹣2(x2﹣2x)-3=0時,設x2﹣2x=y,則原方程可轉化為y2﹣2y-3=0,解得y1=-1,y2=3,所以x2﹣2x=-1或x2﹣2x=3,可得x1=x2=1,x3=3,x4=-1.我們把這種解方程的方法叫做換元法.對于方程:x2+﹣3x﹣=12,我們也可以類似用換元法設x+ =y,將原方程轉化為一元二次方程,再進一步解得結果,那么換元得到的一元二次方程式是( )
A.y2﹣3y﹣12=0B.y2+y﹣8=0
C.y2﹣3y﹣14=0D.y2﹣3y﹣10=0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1) 知識儲備
①如圖 1,已知點 P 為等邊△ABC 外接圓的弧BC 上任意一點.求證:PB+PC= PA.
②定義:在△ABC 所在平面上存在一點 P,使它到三角形三頂點的距離之和最小,則稱點 P 為△ABC
的費馬點,此時 PA+PB+PC 的值為△ABC 的費馬距離.
(2)知識遷移
①我們有如下探尋△ABC (其中∠A,∠B,∠C 均小于 120°)的費馬點和費馬距離的方法:
如圖 2,在△ABC 的外部以 BC 為邊長作等邊△BCD 及其外接圓,根據(jù)(1)的結論,易知線段____的長度即為△ABC 的費馬距離.
②在圖 3 中,用不同于圖 2 的方法作出△ABC 的費馬點 P(要求尺規(guī)作圖).
(3)知識應用
①判斷題(正確的打√,錯誤的打×):
ⅰ.任意三角形的費馬點有且只有一個(__________);
ⅱ.任意三角形的費馬點一定在三角形的內部(__________).
②已知正方形 ABCD,P 是正方形內部一點,且 PA+PB+PC 的最小值為,求正方形 ABCD 的
邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國貿商店服裝柜在銷售中發(fā)現(xiàn):“寶樂牌”童裝平均每天可以售出20件,每件盈利40元.為了迎接“六一”兒童節(jié),商場決定采取適當?shù)慕祪r措施,擴大銷售量,增加盈利,盡快減少庫存.經(jīng)調查發(fā)現(xiàn):每件童裝每降價1元,商場平均每天可多銷售2件.
(1)若每件童裝降價5元,則商場盈利多少元?
(2)若商場每天要想盈利1200元,請你幫助商場算一算,每件童裝應降價多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm,點P由點B出發(fā)沿BA方向向點A勻速運動,同時點Q由點A出發(fā)沿AC方向向點C勻速運動,它們的速度均為lcm/s.連接PQ,設運動時間為t(s)(0<t<4).
(1)當t為何值時,PQ⊥AC?
(2)設△APQ的面積為S,求S與t的函數(shù)關系式,并求出當t為何值時,S取得最大值?S的最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在長方形中,=,=,點從點開始沿邊向終點以的速度移動,與此同時,點從點開始沿邊向終點以的速度移動.如果、分別從、同時出發(fā),當點運動到點時,兩點停止運動.設運動時間為秒.
(1)填空:______=______,______=______(用含t的代數(shù)式表示);
(2)當為何值時,的長度等于?
(3)是否存在
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD內一點E連接BE、CE,過C作CF⊥CE與BE延長線交于點F,連接DF、DE.CE=CF=1,DE=,下列結論中:①△CBE≌△CDF;②BF⊥DF;③點D到CF的距離為2;④S四邊形DECF=+1.其中正確結論的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com