【題目】已知:如圖,ABCD,∠B70°,∠BCE20°,∠CEF130°,請(qǐng)判斷ABEF的位置關(guān)系,并說(shuō)明理由.

解:   ,理由如下:

ABCD,

∴∠B=∠BCD,(   

∵∠B70°,

∴∠BCD70°,(   

∵∠BCE20°,

∴∠ECD50°,

∵∠CEF130°,

   +   180°,

EF   ,(   

ABEF.(   

【答案】ABEF,兩直線(xiàn)平行,內(nèi)錯(cuò)角相等;等量代換,∠E,∠DCE,CD,同旁?xún)?nèi)角互補(bǔ),兩直線(xiàn)平行;平行于同一直線(xiàn)的兩條直線(xiàn)互相平行.

【解析】

依據(jù)平行線(xiàn)的性質(zhì),即可得到∠BCD70°,進(jìn)而得出∠E+DCE180°,進(jìn)而得到EFCD,進(jìn)而得到ABEF

ABEF ,理由如下:

ABCD

∴∠B=∠BCD,( 兩直線(xiàn)平行,內(nèi)錯(cuò)角相等 

∵∠B70°,

∴∠BCD70°,( 等量代換 

∵∠BCE20°,

∴∠ECD50°

∵∠CEF130°,

 ∠E + ∠DCE 180°

EF CD ,( 同旁?xún)?nèi)角互補(bǔ),兩直線(xiàn)平行 

ABEF.( 平行于同一直線(xiàn)的兩條直線(xiàn)互相平行 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的袋中裝有5個(gè)黃球,13個(gè)黑球和22個(gè)紅球,這些球除顏色外其他都相同.
(1)求從袋中摸出一個(gè)球是黃球的概率.
(2)現(xiàn)在從袋中取出若干個(gè)黑球,并放入相同數(shù)量的黃球,攪拌均勻后,使從袋中摸出一個(gè)球是黃球的概率不小于 ,問(wèn):至少取出多少個(gè)黑球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,D是邊AB上一點(diǎn),E是邊AC的中點(diǎn),作CFABDE的延長(zhǎng)線(xiàn)于點(diǎn)F

1)證明:△ADE≌△CFE;

2)若∠B=∠ACB,CE5,CF7,求DB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)課上,王老師布置如下任務(wù):如圖,△ABC中,BC>AB>AC,在BC邊上取一點(diǎn)P,使∠APC=2∠ABC.

小路的作法如下:

① 作AB邊的垂直平分線(xiàn),交BC于點(diǎn)P,交AB于點(diǎn)Q;

② 連結(jié)AP.

請(qǐng)你根據(jù)小路同學(xué)的作圖方法,利用直尺和圓規(guī)完成作圖(保留作圖痕跡);并完成以下推理,注明其中蘊(yùn)含的數(shù)學(xué)依據(jù):

∵ PQ是AB的垂直平分線(xiàn)

∴ AP= , (依據(jù): );

∴ ∠ABC= , (依據(jù): ).

∴ ∠APC=2∠ABC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AM∥BN,∠A=60°,點(diǎn)P是射線(xiàn)M上一動(dòng)點(diǎn)(與點(diǎn)A不重合),BC,BD分別平分∠ABP和∠PBN,分別交射線(xiàn)AM于點(diǎn)C,D.

(1)∠CBD=   

(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到某處時(shí),∠ACB=∠ABD,則此時(shí)∠ABC=   

(3)在點(diǎn)P運(yùn)動(dòng)的過(guò)程中,∠APB與∠ADB的比值是否隨之變化?若不變,請(qǐng)求出這個(gè)比值:若變化,請(qǐng)找出變化規(guī)律.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某一工程招標(biāo)時(shí),接到甲.乙兩工程隊(duì)的投標(biāo)書(shū),每施工一天,需付甲工程隊(duì)工程款1.5萬(wàn)元,乙工程隊(duì)工程款1.1萬(wàn)元.目前有三種施工方案:

方案一:甲隊(duì)單獨(dú)完成此項(xiàng)工程剛好如期完成;

方案二:乙隊(duì)單獨(dú)完成此項(xiàng)工程比規(guī)定日期多5天;

方案三:若甲.乙兩隊(duì)合作4天,剩下的工程由乙隊(duì)單獨(dú)做也正好如期完成.

哪一種方案既能如期完工又最節(jié)省工程款?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合題
(1)拋物線(xiàn)m1:y1=a1x2+b1x+c1中,函數(shù)y1與自變量x之間的部分對(duì)應(yīng)值如表:

設(shè)拋物線(xiàn)m1的頂點(diǎn)為P,與y軸的交點(diǎn)為C,則點(diǎn)P的坐標(biāo)為 , 點(diǎn)C的坐標(biāo)為
(2)將設(shè)拋物線(xiàn)m1沿x軸翻折,得到拋物線(xiàn)m2:y2=a2x2+b2x+c2 , 則當(dāng)x=-3時(shí),y2=
(3)在(1)的條件下,將拋物線(xiàn)m1沿水平方向平移,得到拋物線(xiàn)m3 . 設(shè)拋物線(xiàn)m1與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),拋物線(xiàn)m3與x軸交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左側(cè)).過(guò)點(diǎn)C作平行于x軸的直線(xiàn),交拋物線(xiàn)m3于點(diǎn)K.問(wèn):是否存在以A,C,K,M為頂點(diǎn)的四邊形是菱形的情形?若存在,請(qǐng)求出點(diǎn)K的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某書(shū)店老板去圖書(shū)批發(fā)市場(chǎng)購(gòu)買(mǎi)某種圖書(shū).第一次用1200元購(gòu)書(shū)若干本,并按該書(shū)定價(jià)7元出售,很快售完.由于該書(shū)暢銷(xiāo),第二次購(gòu)書(shū)時(shí),每本書(shū)的批發(fā)價(jià)已比第一次提高了20%,他用1500元所購(gòu)該書(shū)數(shù)量比第一次多10本.當(dāng)按定價(jià)7元售出150本時(shí),出現(xiàn)滯銷(xiāo),便以定價(jià)的5折售完剩余的書(shū).

(1)每本書(shū)第一次的批發(fā)價(jià)是多少錢(qián)?

(2)試問(wèn)該老板這兩次售書(shū)總體上是賠錢(qián)了,還是賺錢(qián)了(不考慮其它因素)?若賠錢(qián),賠多少?若賺錢(qián),賺多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AB是⊙O的直徑,弦 ,∠B=60°,OD⊥AC,垂足為D.

(1)求OD的長(zhǎng);
(2)求劣弧AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案