【題目】某數(shù)學社團成員想利用所學的知識測量某廣告牌的寬度圖中線段MN的長,直線MN垂直于地面,垂足為點在地面A處測得點M的仰角為、點N的仰角為,在B處測得點M的仰角為,米,且A、B、P三點在一直線上請根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長.
參考數(shù)據(jù):,,,,,
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一條河的北岸有兩個目標M、N,現(xiàn)在位于它的對岸設定兩個觀測點A、B.已知AB∥MN,在A點測得∠MAB=60°,在B點測得∠MBA=45°,AB=600米.
(1)求點M到AB的距離;(結果保留根號)
(2)在B點又測得∠NBA=53°,求MN的長.(結果精確到1米)
(參考數(shù)據(jù):≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在x軸的正半軸上依次截取OA1=A1A2=A2A3=A3A4=A4A5,過點A1、A2、A3、A4、A5分別作x軸的垂線與反比例函數(shù)y=(x≠0)的圖象相交于點P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2,A2P3A3,A3P4A4,A4P5A5,并設其面積分別為S1、S2、S3、S4、S5,則S10=_____.(n≥1的整數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC在平面直角坐標系中,若x2﹣2x+2=0的兩根是x1、x2,且OC=x1+x2,OA=x1x2
(1)求B點的坐標.
(2)把△ABC沿AC對折,點B落在點B′處,線段AB′與x軸交于點D,求直線BD的解析式.
(3)在平面上是否存在點P,使D、C、B、P四點形成的四邊形為平形四邊形?若存在,請直接寫出P點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連結AC,過弧BD上一點E作EG∥AC交CD的延長線于點G,連結AE交CD于點F,且EG=FG,連結CE.
(1)求證:△ECF∽△GCE;
(2)求證:EG是⊙O的切線;
(3)延長AB交GE的延長線于點M,若tan∠G=,AH=3,求EM的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知第一象限內的點A在反比例函數(shù)y=的圖象上,第二象限內的點B在反比例函數(shù)y=的圖象上,且OA⊥OB,cosA=,則k的值為( )
A. -3 B. -4 C. - D. -2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,經過原點O的拋物線(a≠0)與x軸交于另一點A(,0),在第一象限內與直線y=x交于點B(2,t).
(1)求這條拋物線的表達式;
(2)在第四象限內的拋物線上有一點C,滿足以B,O,C為頂點的三角形的面積為2,求點C的坐標;
(3)如圖2,若點M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點P,使得△POC∽△MOB?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平整的地面上,有若干個完全相同的棱長為10cm的小正方體堆成一個幾何體,如圖所示.
(1)這個幾何體由 個小正方體組成,請畫出這個幾何體的三視圖;
(2)如果在這個幾何體的表面噴上黃色的漆,則在所有的小正方體中,有 個正方體只有一個面是黃色,有 個正方體只有兩個面是黃色,有 個正方體只有三個面是黃色;
(3)若現(xiàn)在你手頭還有一些相同的小正方體,如果保持俯視圖和左視圖不變,最多可以再添加幾個小正方體.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D為BC的中點,若動點E以1cm/s的速度從A點出發(fā),沿著A→B→A的方向運動,設E點的運動時間為t秒,連接DE,當△BDE是直角三角形時,t的值______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com