如下圖所示,已知等腰梯形ABCD,AD∥BC,AD=2,BC=6,AB=DC=,若動直線l垂直于BC,且從經過點B的位置向右平移,直至經過點C的位置停止,設掃過的陰影部分的面積為S,BP為x,則S關于x的函數(shù)關系式是 。
科目:初中數(shù)學 來源: 題型:
將矩形OABC置于平面直角坐標系中,點A的坐標為(0,4),點C的坐標為(m,0)(m>0),點D(m,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標平面內,設點B的對應點為點E,當△ADE是等腰直角三角形時,m= ,點E的坐標為 ;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖1,把邊長分別是為4和2的兩個正方形紙片OABC和OD′E′F′疊放在一起.
(1)操作1:固定正方形OABC,將正方形OD′E′F′繞點O按順時針方向旋轉45°得到正方形ODEF,如圖2,連接AD、CF,線段AD與CF之間有怎樣的數(shù)量關系?試證明你的結論;
(2)操作2,如圖2,將正方形ODEF沿著射線DB以每秒1個單位的速度平移,平移后的正方形ODEF設為正方形PQMN,如圖3,設正方形PQMN移動的時間為x秒,正方形PQMN與正方形OABC的重疊部分面積為y,直接寫出y與x之間的函數(shù)解析式;
(3)操作3:固定正方形OABC,將正方形OD′E′F′繞點O按順時針方向旋轉90°得到正方形OHKL,如圖4,求△ACK的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,梯形ABCD中,AB∥DC,DE⊥AB,CB⊥AB,且AE = EB = 5,DE = 12,動點P從點A出發(fā),沿折線AD-DC-CB以每秒1個單位長的速度運動到點B停止。設運動時間為t秒,y = S△EPB,則y與t的函數(shù)圖象大致是【 】
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖1,在平面直角坐標系中,直線AB與軸交于點A,與軸交于點B,與直線OC:交于點C.
(1)若直線AB解析式為,
①求點C的坐標;
②求△OAC的面積.
(2)如圖2,作的平分線ON,若AB⊥ON,垂足為E, OA=4,P、Q分別為線段OA、OE上的動點,連結AQ與PQ,試探索AQ+PQ是否存在最小值?若存在,求出這個最小值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
某數(shù)學興趣小組對線段上的動點問題進行探究,已知AB=8.
問題思考:
如圖1,點P為線段AB上的一個動點,分別以AP、BP為邊在同側作正方形APDC與正方形PBFE.
(1)在點P運動時,這兩個正方形面積之和是定值嗎?如果時求出;若不是,求出這兩個正方形面積之和的最小值.
(2)分別連接AD、DF、AF,AF交DP于點A,當點P運動時,在△APK、△ADK、△DFK中,是否存在兩個面積始終相等的三角形?請說明理由.
問題拓展:
(3)如圖2,以AB為邊作正方形ABCD,動點P、Q在正方形ABCD的邊上運動,且PQ=8.若點P從點A出發(fā),沿A→B→C→D的線路,向D點運動,求點P從A到D的運動過程中,PQ的中點O所經過的路徑的長。
(4)如圖(3),在“問題思考”中,若點M、N是線段AB上的兩點,且AM=BM=1,點G、H分別是邊CD、EF的中點.請直接寫出點P從M到N的運動過程中,GH的中點O所經過的路徑的長及OM+OB的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
兩個全等的梯形紙片如圖(1)擺放,將梯形紙片ABCD沿上底AD方向向右平移得到圖(2).已知AD=4,BC=8,若陰影部分的面積等于四邊形A′B′BA的面積,則圖(2)中平移距離A′A= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
在中,現(xiàn)有兩個動點P、Q分別從點A和點B同時出發(fā),其中點P以1cm/s的速度,沿AC向終點C移動;點Q以1.25cm/s的速度沿BC向終點C移動。過點P作PE∥BC交AD于點E,連結EQ。設動點運動時間為x秒。
(1)用含x的代數(shù)式表示AE、DE的長度;
(2)當點Q在BD(不包括點B、D)上移動時,設的面積為,求與月份的函數(shù)關系式,并寫出自變量的取值范圍;
(3)當為何值時,為直角三角形。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com