【題目】如圖,在正方形ABCD中,點E在BC上,點F在CD上,連接AE、AF、EF,∠EAF=45°,BE=3,CF=4,則正方形的邊長為__________.
【答案】6
【解析】
延長CB至點G,使BG=DF,并連接AG,證明△ABG≌△ADF,△AEG≌△AEF,設(shè)正方形邊長為x,在Rt△CEF中應(yīng)用勾股定理進(jìn)行求解.
如圖,延長CB至點G,使BG=DF,并連接AG,
在△ABG和△ADF中,,
∴△ABG≌△ADF(SAS),
∴AG=AF,∠GAB=∠DAF,
∵∠EAF=45°,
∴∠BAE+∠DAF=∠BAE+∠GAB=∠GAE=45°,
∴∠EAF=∠GAE,
在△AEG和△AEF中,,
∴△AEG≌△AEF(SAS),
∴GE=EF,
設(shè)正方形邊長為x,則BG=DF=x-4,GE=EF=x-1,CE=x-3,
在Rt△CEF中,,
解得,,
∴正方形的邊長為6,
故答案為:6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠A=110°,E,F分別是邊AB和BC的中點,EP⊥CD于點P,則∠FPC=( )
A. 35° B. 45° C. 50° D. 55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD的外側(cè),作等邊三角形BCE,連接AE,DE.
(1)求證:AE=DE
(2)過點D作DF⊥AE,垂足為F,若AB=2cm,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90,E為AB的中點,求證:
(1)AC2=AB·AD;
(2)CE∥AD。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.
(1)求證:△AEF≌△DEB;
(2)證明四邊形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實踐與操作:一般地,如果把一個圖形繞著一個定點旋轉(zhuǎn)一定角度α(α小于360°)后,能夠與原來的圖形重合,那么這個圖形叫做旋轉(zhuǎn)對稱圖形,這個定點叫做旋轉(zhuǎn)對稱中心,α叫做這個旋轉(zhuǎn)對稱圖形的一個旋轉(zhuǎn)角,請根據(jù)上述規(guī)定解答下列問題:
(1)請寫出一個有一個旋轉(zhuǎn)角是90°旋轉(zhuǎn)對稱圖形,這個圖形可以是_____;
(2)尺規(guī)作圖:在圖中的等邊三角形內(nèi)部作出一個圖形,使作出的圖形和這個等邊三角形構(gòu)成的整體既是一個旋轉(zhuǎn)對稱圖形又是一個軸對稱圖形(作出的圖形用實線,作圖過程用虛線,保留痕跡,不寫做法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知AB=AC,D為∠BAC的角平分線上面一點,連接BD,CD;如圖2,已知AB=AC,D、E為∠BAC的角平分線上面兩點,連接BD,CD,BE,CE;如圖3,已知AB=AC,D、E、F為∠BAC的角平分線上面三點,連接BD,CD,BE,CE,BF,CF;…,依次規(guī)律,第12個圖形中有全等三角形的對數(shù)是( )
A. 80對B. 78對C. 76對D. 以上都不對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點,點.
(1)①畫出線段關(guān)于軸對稱的線段,則點的坐標(biāo)為 ;
②將線段平移至,其中點與點對應(yīng),畫出線段并寫出點的坐標(biāo);
(2)點在(1)中四邊形邊上,且是對角線上--動點,則的最小值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com