【題目】1)如圖1,在等邊△ABC中,點(diǎn)MBC邊上的任意一點(diǎn)(不含端點(diǎn)BC),連結(jié)AM,以AM為邊作等邊△AMN,并連結(jié)CN.求證:ABCN+CM

2)(類比探究)如圖2,在等邊△ABC中,若點(diǎn)MBC延長(zhǎng)線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,則ABCN+CM是否還成立?若成立,請(qǐng)說明理由;若不成立,請(qǐng)寫出AB,CN,CM三者之間的數(shù)量關(guān)系,并給予證明.

【答案】1)見解析;(2)不成立,ABCNCM,見解析

【解析】

1)根據(jù)等邊三角形的性質(zhì)得到ABBCAC,∠BAC=∠B=∠ACB60°,AMMNAN,∠MAN=∠AMN=∠ANM60°,證明△BAM≌△CAN,根據(jù)全等三角形的性質(zhì)、結(jié)合圖形證明結(jié)論;

2)仿照(1)的證明過程解答即可.

1)證明:∵△ABC是等邊三角形,

ABBCAC,∠BAC=∠B=∠ACB60°,

∵△AMN是等邊三角形,

AMMNAN,∠MAN=∠AMN=∠ANM60°,

∴∠BAC﹣∠MAC=∠MAN﹣∠MAC,即∠BAM=∠CAN,

在△BAM和△CAN中,,

∴△BAM≌△CANSAS

BMCN

ABBCBM+CMCN+CM;

2)解:ABCN+CM不成立,ABCNCM

由(1)可知,∠BAC=∠MAN

∴∠BAC+MAC=∠MAN+MAC,即∠BAM=∠CAN,

在△BAM和△CAN中,,

∴△BAM≌△CANSAS

BMCN,

ABBCBMCMCNCM

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃購買A,B兩種型號(hào)的電腦,已知購買一臺(tái)A型電腦需0.6萬元,購買一臺(tái)B型電腦需0.4萬元,該公司準(zhǔn)備投入資金y萬元,全部用于購進(jìn)35臺(tái)這兩種型號(hào)的電腦,設(shè)購進(jìn)A型電腦x臺(tái).

(1)求y關(guān)于x的函數(shù)解析式;

(2)若購進(jìn)B型電腦的數(shù)量不超過A型電腦數(shù)量的2倍,則該公司至少需要投入資金多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一個(gè)問題:探究函數(shù)yx+|x2|的圖象與性質(zhì)

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)yx+|x2|的圖象與性質(zhì)進(jìn)行了探究

下面是小明的探究過程,請(qǐng)補(bǔ)充完成:

1)化簡(jiǎn)函數(shù)解析式,當(dāng)x2時(shí),y   ;當(dāng)x2時(shí),y   ;

2)根據(jù)(1)中的結(jié)果,請(qǐng)?jiān)趫D1的坐標(biāo)系中畫出函數(shù)yx+|x2|的圖象;

3)結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì):   ;

4)結(jié)合畫出的函數(shù)圖象,利用圖2解決問題,若關(guān)于x的方程ax+1x+|x2|有兩個(gè)實(shí)數(shù)根,直接寫出實(shí)數(shù)a的取值范圍:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級(jí)的小明同學(xué)通到這樣一道數(shù)學(xué)題目:ABC為邊長(zhǎng)為4的等邊三角形,E是邊AB邊上任意一動(dòng)點(diǎn),點(diǎn)DCB的延長(zhǎng)線上,且滿足AEBD

1)如圖①,當(dāng)點(diǎn)EAB的中點(diǎn)時(shí),DE   

2)如圖②,點(diǎn)E在運(yùn)動(dòng)過程中,DEEC滿足什么數(shù)量關(guān)系?請(qǐng)說明理由;

3)如圖③,FAC的中點(diǎn),連接EF.在AB邊上是否存在點(diǎn)E,使得DE+EF值最?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說明理由.(直角三角形中,30°所對(duì)的邊是斜邊的一半)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+cx軸交于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C,連接BC交拋物線的對(duì)稱軸于點(diǎn)E,D是拋物線的頂點(diǎn).

(1)求此拋物線的解析式;

(2)求點(diǎn)C和點(diǎn)D的坐標(biāo);

(3)若點(diǎn)P在第一象限內(nèi)的拋物線上,且SABP=4SCOE,求P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平面直角坐標(biāo)系中,點(diǎn),點(diǎn)軸上方的點(diǎn),且、分別平分,過點(diǎn),與的延長(zhǎng)線交于點(diǎn).

1)當(dāng)時(shí),求的長(zhǎng).

2)求證:.

3)若的中點(diǎn)為,探究點(diǎn)橫坐標(biāo)的規(guī)律.

特殊情況探究:當(dāng)時(shí),求出此時(shí)點(diǎn)的橫坐標(biāo)為6,當(dāng)時(shí),求得此時(shí)點(diǎn)的橫坐標(biāo)為______.

一般情況探究:當(dāng)時(shí),點(diǎn)橫坐標(biāo)的規(guī)律是什么?并證明這個(gè)規(guī)律.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圓材埋壁是我國著名的數(shù)學(xué)著作《九章算術(shù)》中的一個(gè)問題,今有圓材,埋于壁中,不知大小,以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,問徑幾何?用現(xiàn)代的數(shù)學(xué)語言表達(dá)是:如圖,CD是⊙O的直徑,弦ABCD,垂足為E,CE = 1寸,AB = 1尺,求直徑的長(zhǎng)”. 依題意,CD長(zhǎng)為(

A. B. 13 C. 25 D. 26

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)到的位置,使點(diǎn)對(duì)應(yīng)點(diǎn)落在直線上,再將繞點(diǎn)旋轉(zhuǎn)到的位置,使點(diǎn)的對(duì)應(yīng)點(diǎn)落在直線上,依次進(jìn)行下去,若點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,則點(diǎn)的橫坐標(biāo)為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為5cm,弦AB8cm,P為弦AB上的一動(dòng)點(diǎn),若OP的長(zhǎng)度為整數(shù),則滿足條件的點(diǎn)P____個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案