【題目】在菱形ABCD中,∠B=60,E是邊CD上一點,以CE為邊作等邊△CEF.
(1) 如圖1,當CE⊥AD ,CF=時,求菱形ABCD的面積;
(2) 如圖2,過點E作∠CEF的平分線交CF于H,連接DH,并延長DH與AC的延長交于點P,若∠ECD=15,求證:.
【答案】(1);(2)見解析.
【解析】
(1)由等邊三角形的性質(zhì)得出CE的長.再由菱形的性質(zhì)及∠B=60得到CD的長,根據(jù)菱形的面積公式即可得出結(jié)論.
(2)連接DF,過F作FG⊥CD于G.由菱形的性質(zhì)及∠B=60得到△ABC和△ACD是等邊三角形,即可證明△ACE≌△DCF,進而得到DF//AP,由平行線的性質(zhì)得到∠FDH=∠CPH.
由等邊三角形的性質(zhì)得到CH=HF.可證明△CHP≌△FHD,得到DF=CP.在Rt△DGF中,由∠FDC=60,可得.在等腰Rt△CFG中,有,從而可以得出結(jié)論.
(1)∵等邊△CEF,CF=,∴CE=CF=.
∵菱形ABCD,∠B=60,∴∠D=∠B=60,AD=CD.
∵CE⊥AD,∴∠ECD=30,∴CD=4,∴AD=4,∴S菱形ABCD=ADCE=.
(2)連接DF,過F作FG⊥CD于G.
∵菱形ABCD,∴AB=BC=CD=AD.
∵∠B=60,∴△ABC和△ACD是等邊三角形,∴∠CAD=∠ACD=60.
∵等邊△CEF,∴CE=CF,∠ECF=60,∴∠ACD-∠ECD=∠ECF-∠ECD即∠ACE=∠DCF.
在△ACE與△DCF中,,∴△ACE≌△DCF,∴∠FDC=60.
∵∠ACD=60,∴DF//AP,∴∠FDH=∠CPH.
∵等邊△CEF,EH平分∠CEF,∴CH=HF.
在△CHP與△FHD中,∵∠FDH=∠CPH,∠FHD=∠CHP,HF=CH,∴△CHP≌△FHD,∴DF=CP.
∵∠FDC=60,FG⊥CD,∴.
∵∠ECF=60,∠ECD=15,∴∠DCF=45.
∵∠DCF=45,FG⊥CD,∴,∴.
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=2,BC=4.點D是線段BC上的一個動點.點D與點B、C不重合,過點D作DE⊥BC交AB于點E,將△ABC沿著直線DE翻折,使點B落在直線BC上的F點.
(1)設∠BAC=α(如圖①),求∠AEF的大;(用含α的代數(shù)式表示)
(2)當點F與點C重合時(如圖②),求線段DE的長度;
(3)設BD=x,△EDF與△ABC重疊部分的面積為S,試求出S與x之間函數(shù)關系式,并寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為緩解油價上漲給出租車行業(yè)帶來的成本壓力,某市擬調(diào)整出租車運價,調(diào)整方案見下列表格及圖象(其中為常數(shù))
行駛路程 | 收費標準 | |
調(diào)價前 | 調(diào)價后 | |
不超過的部分 | 起步價7元 | 起步價元 |
超過不超出的部分 | 每公里2元 | 每公里元 |
超出的部分 | 每公里元 |
設行駛路程為,調(diào)價前的運價(元),調(diào)價后運價(元),如圖,折線表示與之間的函數(shù)關系式,線段表示當時,與的函數(shù)關系式,根據(jù)圖表信息,完成下列各題:
①填空: , , ;
②當時,求與的關系,補充圖中該函數(shù)的圖像;
③函數(shù)與的圖象是否存在交點?若存在,求出交點的坐標,并說明該點的實際意義;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明和小華先后從甲地出發(fā)到乙地,小明先乘坐客車出發(fā)1小時,小華才開車前住乙地,小華到達乙地后立即按原速從乙地返回甲地。已知小明、小華離甲地距離y(千米)與小明出發(fā)時間x(小時)之間的函數(shù)關系如圖所示,請根據(jù)圖象解答下列問題:小華從乙地返回后再經(jīng)過___小時與小明相遇.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,CD⊥AB,垂足為D. 點E在BC上,EF⊥AB,垂足為F,∠1=∠2.
(1)試說明DG∥BC的理由;
(2)如果∠B=54°,且∠ACD=35°,求的∠3度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某蔬菜加工公司先后兩批次收購蒜薹(tái)共100噸.第一批蒜薹價格為4000元/噸;因蒜薹大量上市,第二批價格跌至1000元/噸.這兩批蒜薹共用去16萬元.
(1)求兩批次購進蒜薹各多少噸;
(2)公司收購后對蒜薹進行加工,分為粗加工和精加工兩種:粗加工每噸利潤400元,精加工每噸利潤1000元.要求精加工數(shù)量不多于粗加工數(shù)量的三倍.為獲得最大利潤,精加工數(shù)量應為多少噸?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是小強洗漱時的側(cè)面示意圖,洗漱臺(矩形ABCD)靠墻擺放,高AD=80cm,寬AB=48cm,小強身高166cm,下半身FG=100cm,洗漱時下半身與地面成80°(∠FGK=80°),身體前傾成125°(∠EFG=125°),腳與洗漱臺距離GC=15cm(點D,C,G,K在同一直線上).
(1)此時小強頭部E點與地面DK相距多少?
(2)小強希望他的頭部E恰好在洗漱盆AB的中點O的正上方,他應向前或后退多少?
(sin80°≈0.98,cos80°≈0.17, ≈1.41,結(jié)果精確到0.1cm)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)學學習中,及時對知識進行歸納和整理是提高學習效率的重要方法,善于學習的小明在學習了一次方程(組)、一元一次不等式和一次函數(shù)后,對照圖形,把相關知識歸納整理如下:
一次函數(shù)與方程(組)的關系:
(1)一次函數(shù)的解析式就是一個二元一次方程;
(2)點B的橫坐標是方程kx+b=0的解;
(3)點C的坐標(x,y)中x,y的值是方程組①的解.
一次函數(shù)與不等式的關系:
(1)函數(shù)y=kx+b的函數(shù)值y大于0時,自變量x的取值范圍就是不等式kx+b>0的解集;
(2)函數(shù)y=kx+b的函數(shù)值y小于0時,自變量x的取值范圍就是不等式②的解集.
(一)請你根據(jù)以上歸納整理的內(nèi)容在下面的數(shù)字序號后寫出相應的結(jié)論:① ;② ;
(二)如果點B坐標為(2,0),C坐標為(1,3);
①直接寫出kx+b≥k1x+b1的解集;
②求直線BC的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=x與反比例函數(shù)y=的圖象交于A,B兩點,且點A的橫坐標為.在坐標軸上找一點C,直線AB上找一點D,在雙曲線y=找一點E,若以O,C,D,E為頂點的四邊形是有一組對角為60的菱形,那么符合條件點D的坐標為___.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com