【題目】某倉(cāng)儲(chǔ)中心有一個(gè)坡度為i=1:2的斜坡AB,頂部A處的高AC為4米,B、C在同一水平地面上,其橫截面如圖.
(1)求該斜坡的坡面AB的長(zhǎng)度;
(2)現(xiàn)有一個(gè)側(cè)面圖為矩形DEFG的長(zhǎng)方體貨柜,其中長(zhǎng)DE=2.5米,高EF=2米,該貨柜沿斜坡向下時(shí),點(diǎn)D離BC所在水平面的高度不斷變化,求當(dāng)BF=3.5米時(shí),點(diǎn)D離BC所在水平面的高度DH.
【答案】(1)米;(2)m.
【解析】
(1)根據(jù)坡度定義以及勾股定理解答即可;
(2)證出∠GDM=∠HBM,根據(jù),得到GM=1m,利用勾股定理求出DM的長(zhǎng),然后求出BM=5m,進(jìn)而求出MH,然后得到DH.
(1)∵坡度為i=1:2,AC=4m,
∴BC=4×2=8m.
∴AB===(米);
(2)∵∠DGM=∠BHM,∠DMG=∠BMH,
∴∠GDM=∠HBM,
∴,
∵DG=EF=2m,
∴GM=1m,
∴DM=,BM=BF+FM=3.5+(2.5﹣1)=5m,
設(shè)MH=xm,則BH=2xm,
∴x2+(2x)2=52,
∴x=m,
∴DH==m.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】合與實(shí)踐﹣﹣探究圖形中角之間的等量關(guān)系及相關(guān)問(wèn)題.
問(wèn)題情境:
正方形ABCD中,點(diǎn)P是射線(xiàn)DB上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)C作CE⊥AP于點(diǎn)E,點(diǎn)Q與點(diǎn)P關(guān)于點(diǎn)E對(duì)稱(chēng),連接CQ,設(shè)∠DAP=α(0°<α<135°),∠QCE=β.
初步探究:
(1)如圖1,為探究α與β的關(guān)系,勤思小組的同學(xué)畫(huà)出了0°<α<45°時(shí)的情形,射線(xiàn)AP與邊CD交于點(diǎn)F.他們得出此時(shí)α與β的關(guān)系是β=2α.借助這一結(jié)論可得當(dāng)點(diǎn)Q恰好落在線(xiàn)段BC的延長(zhǎng)線(xiàn)上(如圖2)時(shí),α= °,β= °;
深入探究:
(2)敏學(xué)小組的同學(xué)畫(huà)出45°<α<90°時(shí)的圖形如圖3,射線(xiàn)AP與邊BC交于點(diǎn)G.請(qǐng)猜想此時(shí)α與β之間的等量關(guān)系,并證明結(jié)論;
拓展延伸:
(3)請(qǐng)你借助圖4進(jìn)一步探究:①當(dāng)90°<α<135°時(shí),α與β之間的等量關(guān)系為 ;
②已知正方形邊長(zhǎng)為2,在點(diǎn)P運(yùn)動(dòng)過(guò)程中,當(dāng)α=β時(shí),PQ的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某區(qū)在實(shí)施居民用水管理前,隨機(jī)調(diào)查了部分家庭(單位:戶(hù))去年的月均用水量(單位:t),并將調(diào)查數(shù)據(jù)進(jìn)行整理,繪制出如下不完整的統(tǒng)計(jì)圖表:
月均用水量 | 頻數(shù) | 頻率 |
0≤x<5 | 6 | 12% |
5≤x<10 | 12 | 24% |
10≤x<15 |
| 32% |
15≤x<20 | 10 | 20% |
20≤x<25 | 4 |
|
25≤x<30 | 2 | 4% |
合計(jì) |
| 100% |
請(qǐng)解答以下問(wèn)題:
(I)把上面的頻數(shù)分布表和頻數(shù)分布直方圖補(bǔ)充完整;
(Ⅱ)若該小區(qū)有2000戶(hù)家庭,根據(jù)此次隨機(jī)抽查的數(shù)據(jù)估計(jì),該小區(qū)月均用水量不低于20t的家庭有多少戶(hù)?
(Ⅲ)為了鼓勵(lì)節(jié)約用水,要確定一個(gè)月均用水量的標(biāo)準(zhǔn),超出該標(biāo)準(zhǔn)的部分按1.5倍價(jià)格收費(fèi),若要使68%的家庭水費(fèi)支出不受影響,那么,你覺(jué)得家庭月均用水量應(yīng)定為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AC=BC=5, AB=6, 點(diǎn)D為AC上一點(diǎn),作DE//AB交BC于點(diǎn)E,點(diǎn)C關(guān)于DE的對(duì)稱(chēng)點(diǎn)為點(diǎn)O,以OA為半徑作⊙O恰好經(jīng)過(guò)點(diǎn)C,并交直線(xiàn)DE于點(diǎn)M,N.則MN的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一元二次方程mx2-2mx+m-2=0.
(1)若方程有兩個(gè)不等實(shí)數(shù)根,求m的取值范圍;
(2)若方程的兩實(shí)數(shù)根為x1,x2,且|x1-x2|=1,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形中,點(diǎn)是上任意一點(diǎn),過(guò)點(diǎn)作交于點(diǎn),連接并延長(zhǎng)交的延長(zhǎng)線(xiàn)于點(diǎn),則下列結(jié)論中錯(cuò)誤的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形為的內(nèi)接四邊形,直徑與對(duì)角線(xiàn)相交于點(diǎn),作于,與過(guò)點(diǎn)的直線(xiàn)相交于點(diǎn),.
(1)求證:為的切線(xiàn);
(2)若平分,求證:;
(3)在(2)的條件下,為的中點(diǎn),連接,若,的半徑為,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)交軸于兩點(diǎn),與軸交于點(diǎn),連接.點(diǎn)是第一象限內(nèi)拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),點(diǎn)的橫坐標(biāo)為.
(1)求此拋物線(xiàn)的表達(dá)式;
(2)過(guò)點(diǎn)作軸,垂足為點(diǎn),交于點(diǎn).試探究點(diǎn)P在運(yùn)動(dòng)過(guò)程中,是否存在這樣的點(diǎn),使得以為頂點(diǎn)的三角形是等腰三角形.若存在,請(qǐng)求出此時(shí)點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)過(guò)點(diǎn)作,垂足為點(diǎn).請(qǐng)用含的代數(shù)式表示線(xiàn)段的長(zhǎng),并求出當(dāng)為何值時(shí)有最大值,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是△ABC的邊AB上一點(diǎn),⊙O與邊AC相切于點(diǎn)E,與邊BC,AB分別相交于點(diǎn)D,F(xiàn),且DE=EF.
(1)求證:∠C=90°;
(2)當(dāng)BC=3,sinA=時(shí),求AF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com