【題目】如圖,拋物線軸于兩點,與軸交于點,連接.點是第一象限內(nèi)拋物線上的一個動點,點的橫坐標為

(1)求此拋物線的表達式;

(2)過點軸,垂足為點,于點.試探究點P在運動過程中,是否存在這樣的點,使得以為頂點的三角形是等腰三角形.若存在,請求出此時點的坐標,若不存在,請說明理由;

(3)過點,垂足為點.請用含的代數(shù)式表示線段的長,并求出當為何值時有最大值,最大值是多少?

【答案】(1) ;(2) 存在,;;(3) 時,的最大值為:

【解析】

(1)由二次函數(shù)交點式表達式,即可求解;

(2)三種情況,分別求解即可;

(3)即可求解.

解:(1)由二次函數(shù)交點式表達式得:

即:,解得:,

則拋物線的表達式為;

(2)存在,理由:

的坐標分別為,

,

將點的坐標代入一次函數(shù)表達式:并解得:①,

同理可得直線AC的表達式為:

設(shè)直線的中點為,過點垂直直線的表達式中的值為,

同理可得過點與直線垂直直線的表達式為:②,

①當時,如圖1,

,

設(shè):,則,

由勾股定理得:,解得:4(舍去4),

故點;

②當時,如圖1,

,則

,

故點

③當時,

聯(lián)立①②并解得:(舍去)

故點Q的坐標為:;

(3)設(shè)點,則點,

,

,

,

,

有最大值,

時,的最大值為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E為邊AD上的點,點F在邊CD上,且CF3FD,∠BEF90°

1)求證:△ABE∽△DEF;

2)若AB4,延長EFBC的延長線于點G,求BG的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某倉儲中心有一個坡度為i12的斜坡AB,頂部A處的高AC4米,BC在同一水平地面上,其橫截面如圖.

1)求該斜坡的坡面AB的長度;

2)現(xiàn)有一個側(cè)面圖為矩形DEFG的長方體貨柜,其中長DE2.5米,高EF2米,該貨柜沿斜坡向下時,點DBC所在水平面的高度不斷變化,求當BF3.5米時,點DBC所在水平面的高度DH

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近幾年購物的支付方式日益增多,某數(shù)學興趣小組就此進行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內(nèi)購買者的支付方式進行調(diào)查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次一共調(diào)查了多少名購買者?

(2)請補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應(yīng)的圓心角為   度.

(3)若該超市這一周內(nèi)有1600名購買者,請你估計使用AB兩種支付方式的購買者共有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在矩形中,,對角線相交于點,動點由點出發(fā),沿向點運動.設(shè)點的運動路程為的面積為,的函數(shù)關(guān)系圖象如圖②所示,則邊的長為( )

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1RtABC中,∠ACB90°,點DAB邊上的動點(點D不與點A,點B重合),過點DEDCD交直線AC于點E,已知∠A30°,AB4cm,在點D由點A到點B運動的過程中,設(shè)ADxcm,AEycm

1)通過取點、畫圖、測量,得到了xy的幾組值,如表:

小東根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.下面是小東的探究過程,請補充完整:(說明:補全表格時相關(guān)數(shù)值,保留一位小數(shù))

2)在如圖2的平面直角坐標系xOy中,描出以補全后的表中各對對應(yīng)值為坐標的點,畫出該函數(shù)的圖象;

3)結(jié)合畫出的函數(shù)圖象,解決問題:當AEAD時,AD的長度約為  cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知P(-5,m)和Q(3,m)是二次函數(shù)y=2x2+bx+1圖象上的兩點.

(1)求b的值;

(2)將二次函數(shù)y=2x2+bx+1的圖象進行一次平移,使圖象經(jīng)過原點.(寫出一種即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】萬州三中初中數(shù)學組深知人生最具好奇心和幻想力、創(chuàng)造力的時期是中學時代,經(jīng)研究,為我校每一個初中生推薦一本中學生素質(zhì)數(shù)育必讀書《數(shù)學的奧秘》,這本書就是專門為好奇的中學生準備的.這本書不但給于我們知識,解答生活中的疑惑,更重要的是培養(yǎng)我們細致觀察、認真思考、勤于動手的能力.經(jīng)過一學期的閱讀和學習,為了了解學生閱讀效果,我們從初一、初二的學生中隨機各選20名,對《數(shù)學的奧秘》此書閱讀效果做測試(此次測試滿分:100分).通過測試,我們收集到20名學生得分的數(shù)據(jù)如下:

初一

96

100

89

95

62

75

93

86

86

93

95

95

88

94

95

68

92

80

78

90

初二

100

98

96

95

94

92

92

92

92

92

86

84

83

82

78

78

74

64

60

92

通過整理,兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)和方差如表:

年級

平均數(shù)

中位數(shù)

眾數(shù)

方差

初一

87.5

91

m

96.15

初二

86.2

n

92

113.06

某同學將初一學生得分按分數(shù)段(,),繪制成頻數(shù)分布直方圖,初二同學得分繪制成扇形統(tǒng)計圖,如圖(均不完整),初一學生得分頻數(shù)分布直方圖 初二學生得分扇形統(tǒng)計圖(注:x表示學生分數(shù))

請完成下列問題:

1)初一學生得分的眾數(shù)________;初二學生得分的中位數(shù)________;

2)補全頻數(shù)分布直方圖;扇形統(tǒng)計圖中,所對用的圓心角為________度;

3)經(jīng)過分析________學生得分相對穩(wěn)定(填初一初二);

4)你認為哪個年級閱讀效果更好,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,A、B、C三點分別為A(﹣40)、B(﹣4,﹣4)、C04),點Px軸上,點D在直線AB上,若DA1,CPDP,垂足為P,則點P的坐標為_____

查看答案和解析>>

同步練習冊答案