【題目】如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點(diǎn),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D,已知A(﹣1,0).

(1)求點(diǎn)B,C的坐標(biāo);
(2)判斷△CDB的形狀并說(shuō)明理由;
(3)將△COB沿x軸向右平移t個(gè)單位長(zhǎng)度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍.

【答案】
(1)

解:∵點(diǎn)A(﹣1,0)在拋物線y=﹣(x﹣1)2+c上,

∴0=﹣(﹣1﹣1)2+c,得c=4,

∴拋物線解析式為:y=﹣(x﹣1)2+4,

令x=0,得y=3,∴C(0,3);

令y=0,得x=﹣1或x=3,∴B(3,0).


(2)

解:△CDB為直角三角形.理由如下:

由拋物線解析式,得頂點(diǎn)D的坐標(biāo)為(1,4).

如答圖1所示,過(guò)點(diǎn)D作DM⊥x軸于點(diǎn)M,則OM=1,DM=4,BM=OB﹣OM=2.

過(guò)點(diǎn)C作CN⊥DM于點(diǎn)N,則CN=1,DN=DM﹣MN=DM﹣OC=1.

在Rt△OBC中,由勾股定理得:BC= = = ;

在Rt△CND中,由勾股定理得:CD= = = ;

在Rt△BMD中,由勾股定理得:BD= = =

∵BC2+CD2=BD2,

∴△CDB為直角三角形(勾股定理的逆定理).


(3)

解:設(shè)直線BC的解析式為y=kx+b,∵B(3,0),C(0,3),

,

解得k=﹣1,b=3,

∴y=﹣x+3,

直線QE是直線BC向右平移t個(gè)單位得到,

∴直線QE的解析式為:y=﹣(x﹣t)+3=﹣x+3+t;

設(shè)直線BD的解析式為y=mx+n,∵B(3,0),D(1,4),

,

解得:m=﹣2,n=6,

∴y=﹣2x+6.

連接CQ并延長(zhǎng),射線CQ交BD于點(diǎn)G,則G( ,3).

在△COB向右平移的過(guò)程中:

(I)當(dāng)0<t≤ 時(shí),如答圖2所示:

設(shè)PQ與BC交于點(diǎn)K,可得QK=CQ=t,PB=PK=3﹣t.

設(shè)QE與BD的交點(diǎn)為F,則: ,解得 ,∴F(3﹣t,2t).

S=SQPE﹣SPBK﹣SFBE= PEPQ﹣ PBPK﹣ BEyF= ×3×3﹣ (3﹣t)2 t2t= t2+3t;

(II)當(dāng) <t<3時(shí),如答圖3所示:

設(shè)PQ分別與BC、BD交于點(diǎn)K、點(diǎn)J.

∵CQ=t,

∴KQ=t,PK=PB=3﹣t.

直線BD解析式為y=﹣2x+6,令x=t,得y=6﹣2t,

∴J(t,6﹣2t).

S=SPBJ﹣SPBK= PBPJ﹣ PBPK= (3﹣t)(6﹣2t)﹣ (3﹣t)2= t2﹣3t+

綜上所述,S與t的函數(shù)關(guān)系式為:

S=


【解析】(1)首先用待定系數(shù)法求出拋物線的解析式,然后進(jìn)一步確定點(diǎn)B,C的坐標(biāo);(2)分別求出△CDB三邊的長(zhǎng)度,利用勾股定理的逆定理判定△CDB為直角三角形;(3)△COB沿x軸向右平移過(guò)程中,分兩個(gè)階段:(I)當(dāng)0<t≤ 時(shí),如答圖2所示,此時(shí)重疊部分為一個(gè)四邊形;(II)當(dāng) <t<3時(shí),如答圖3所示,此時(shí)重疊部分為一個(gè)三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y= x的圖象如圖所示,則方程ax2+(b﹣ )x+c=0(a≠0)的兩根之和(
A.大于0
B.等于0
C.小于0
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在圓心角為90°的扇形OAB中,半徑OA=4,C為 的中點(diǎn),D、E分別為OA,OB的中點(diǎn),則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,六邊形ABCDEF是正六邊形,曲線FK1K2K3K4K5K6K7…叫做“正六邊形的漸開(kāi)線”,其中弧FK1 , 弧K1K2 , 弧K2K3 , 弧K3K4 , 弧K4K5 , 弧K5K6 , …的圓心依次按點(diǎn)A,B,C,D,E,F(xiàn)循環(huán),其弧長(zhǎng)分別記為L(zhǎng)1 , L2 , L3 , L4 , L5 , L6 , ….當(dāng)AB=1時(shí),L2016等于(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知四邊形DOBC是矩形,且D(0,4),B(6,0).若反比例函數(shù)y= (x>0)的圖象經(jīng)過(guò)線段OC的中點(diǎn)A,交DC于點(diǎn)E,交BC于點(diǎn)F.設(shè)直線EF的解析式為y=k2x+b.
(1)求反比例函數(shù)和直線EF的解析式;
(2)求△OEF的面積;
(3)請(qǐng)結(jié)合圖象直接寫(xiě)出不等式k2x+b﹣ >0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某數(shù)學(xué)興趣小組在全校范圍內(nèi)隨機(jī)抽取了50名同學(xué)進(jìn)行“舌尖上的長(zhǎng)沙﹣我最喜愛(ài)的長(zhǎng)沙小吃”調(diào)查活動(dòng),將調(diào)查問(wèn)卷整理后繪制成如圖所示的不完整條形統(tǒng)計(jì)圖:
請(qǐng)根據(jù)所給信息解答以下問(wèn)題:
(1)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若全校有2000名同學(xué),請(qǐng)估計(jì)全校同學(xué)中最喜愛(ài)“臭豆腐”的同學(xué)有多少人?
(3)在一個(gè)不透明的口袋中有四個(gè)完全相同的小球,把它們分別標(biāo)號(hào)為四種小吃的序號(hào)A、B、C、D,隨機(jī)地摸出一個(gè)小球然后放回,再隨機(jī)地摸出一個(gè)小球,請(qǐng)用列表或畫(huà)樹(shù)形圖的方法,求出恰好兩次都摸到“A”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為
A(﹣1,1),B(﹣3,1),C(﹣1,4).
①畫(huà)出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1;
②將△ABC繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后得到△A2BC2 , 請(qǐng)?jiān)趫D中畫(huà)出△A2BC2 , 并求出線段BC旋轉(zhuǎn)過(guò)程中所掃過(guò)的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓的直徑,點(diǎn)D是 的中點(diǎn),∠ABC=50°,則∠DAB等于(
A.55°
B.60°
C.65°
D.70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)O在直線AB上,點(diǎn)A1、A2、A3 , …在射線OA上,點(diǎn)B1、B2、B3 , …在射線OB上,圖中的每一個(gè)實(shí)線段和虛線段的長(zhǎng)均為一個(gè)單位長(zhǎng)度,一個(gè)動(dòng)點(diǎn)M從O點(diǎn)出發(fā),按如圖所示的箭頭方向沿著實(shí)線段和以O(shè)為圓心的半圓勻速運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,按此規(guī)律,則動(dòng)點(diǎn)M到達(dá)A101點(diǎn)處所需時(shí)間為秒.

查看答案和解析>>

同步練習(xí)冊(cè)答案