【題目】二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y= x的圖象如圖所示,則方程ax2+(b﹣ )x+c=0(a≠0)的兩根之和(
A.大于0
B.等于0
C.小于0
D.不能確定

【答案】A
【解析】解:設ax2+bx+c=0(a≠0)的兩根為x1 , x2 , ∵由二次函數(shù)的圖象可知x1+x2>0,a>0,
∴﹣ >0.
設方程ax2+(b﹣ )x+c=0(a≠0)的兩根為m,n,則m+n=﹣ =﹣ + ,
∵a>0,
>0,
∴m+n>0.
故選A.
設ax2+bx+c=0(a≠0)的兩根為x1 , x2 , 由二次函數(shù)的圖象可知x1+x2>0,a>0,設方程ax2+(b﹣ )x+c=0(a≠0)的兩根為m,n再根據(jù)根與系數(shù)的關系即可得出結(jié)論.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD沿線段AF折疊,使點D落在BC邊的點E處,過點E作EG∥CD交AF于點G,連接DG.

(1)求證:△AGE≌△AGD
(2)探究線段EG、GF、AF之間的數(shù)量關系,并說明理由;
(3)若AG=6,EG=2 ,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算題
(1)(π﹣2017)0+|2﹣ |﹣4cos30°+
(2)先化簡,再求值: ÷ ,其中a=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某園林專業(yè)戶計劃投資種植花卉及樹木,根據(jù)市場調(diào)查與預測,種植樹木的利潤y1與投資成本x成正比例關系,種植花卉的利潤y2與投資成本x的平方成正比例關系,并得到了表格中的數(shù)據(jù);

投資量x(萬元)

2

種植樹木的利潤y1(萬元)

4

種植花卉的利潤y2(萬元)

2


(1)分別求出利潤y1與y2關于投資量x的函數(shù)關系式;
(2)如果這位專業(yè)戶計劃以8萬元資金投入種植花卉和樹木,設他投入種植花卉金額萬元,種植花卉和樹木共獲利潤W萬元,求出W與m之間的函數(shù)關系式,并求他至少獲得多少利潤?他能獲取的最大利潤是多少?
(3)若該專業(yè)戶想獲利不低于22萬元,在(2)的條件下,求出投資種植花卉的金額m的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:(π﹣5)0+cos45°﹣|﹣ |+

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象分別交x軸、y軸于A、B兩點,與反比例函數(shù) 的圖象交于C、D兩點,DE⊥x軸于點E.已知C點的坐標是(6,﹣1),DE=3.

(1)求反比例函數(shù)與一次函數(shù)的解析式.
(2)根據(jù)圖象直接回答:當x為何值時,一次函數(shù)的值大于反比例函數(shù)的值?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】點A,B的坐標分別為(﹣2,3)和(1,3),拋物線y=ax2+bx+c(a<0)的頂點在線段AB上運動時,形狀保持不變,且與x軸交于C,D兩點(C在D的左側(cè)),給出下列結(jié)論:①c<3;②當x<﹣3時,y隨x的增大而增大;③若點D的橫坐標最大值為5,則點C的橫坐標最小值為﹣5;④當四邊形ACDB為平行四邊形時, .其中正確的是( )
A.②④
B.②③
C.①③④
D.①②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,AB是⊙O的直徑,點P在AB的延長線上,弦CE交AB于點,連結(jié)OE,AC,且∠P=∠E,∠POE=2∠CAB.
(1)求證:CE⊥AB;
(2)求證:PC是⊙O的切線;
(3)若BD=2OD,且PB=9,求⊙O的半徑長和tan∠P的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點,與y軸的正半軸交于點C,頂點為D,已知A(﹣1,0).

(1)求點B,C的坐標;
(2)判斷△CDB的形狀并說明理由;
(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關系式,并寫出自變量t的取值范圍.

查看答案和解析>>

同步練習冊答案