【題目】已知:在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A(3,0),B(2,﹣3),C(0,﹣3)
(1)求拋物線的表達(dá)式;
(2)設(shè)點(diǎn)D是拋物線上一點(diǎn),且點(diǎn)D的橫坐標(biāo)為﹣2,求△AOD的面積.

【答案】
(1)解:把A(3,0),B(2,﹣3),C(0,﹣3)代入y=ax2+bx+c得:

,

解得:

則拋物線解析式為y=x2﹣2x﹣3


(2)解:把x=﹣2代入拋物線解析式得:y=5,即D(﹣2,5),

∵A(3,0),即OA=3,

∴SAOD= ×3×5=


【解析】(1)把A,B,C三點(diǎn)坐標(biāo)代入解析式求出a,b,c的值,即可求出函數(shù)解析式;(2)把x=﹣2代入拋物線解析式求出y的值,確定出D坐標(biāo),由OA為底,D縱坐標(biāo)絕對(duì)值為高,求出三角形AOD面積即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A,C分別在x軸和y軸的正半軸上,頂點(diǎn)B的坐標(biāo)為(2m,m),翻折矩形OABC,使點(diǎn)A與點(diǎn)C重合,得到折痕DE,設(shè)點(diǎn)B的對(duì)應(yīng)點(diǎn)為F,折痕DE所在直線與y軸相交于點(diǎn)G,經(jīng)過(guò)點(diǎn)C,F(xiàn),D的拋物線為y=ax2+bx+c.

(1)求點(diǎn)D的坐標(biāo)(用含m的式子表示);
(2)若點(diǎn)G的坐標(biāo)為(0,﹣3),求該拋物線的解析式;
(3)在(2)的條件下,設(shè)線段CD的中點(diǎn)為M,在線段CD上方的拋物線上是否存在點(diǎn)P,使PM=EA?若存在,直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,O是AB邊上的一點(diǎn),以O(shè)A為半徑的⊙O與邊BC相切于點(diǎn)E.
(1)若AC=6,BC=10,求⊙O的半徑.
(2)過(guò)點(diǎn)E作弦EF⊥AB于M,連接AF,若∠F=2∠B,求證:四邊形ACEF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2﹣4ax+1與x軸的正半軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,且OB=3OC,點(diǎn)P是第一象限內(nèi)的點(diǎn),連接BC,△PBC是以BC為斜邊的等腰直角三角形.

(1)求這個(gè)拋物線的表達(dá)式;
(2)求點(diǎn)P的坐標(biāo);
(3)點(diǎn)Q在x軸上,若以Q、O、P為頂點(diǎn)的三角形與以點(diǎn)C、A、B為頂點(diǎn)的三角形相似,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一段斜坡路面的截面圖如圖所示,BC⊥AC,其中坡面AB的坡比i1=1:2,現(xiàn)計(jì)劃削坡放緩,新坡面的坡角為原坡面坡腳的一半,求新坡面AD的坡比i2(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系xOy中,二次函數(shù)y=﹣x2+mx+n的圖象經(jīng)過(guò)點(diǎn)A(3,0),B(m,m+1),且與y軸相交于點(diǎn)C.
(1)求這個(gè)二次函數(shù)的解析式并寫(xiě)出其圖象頂點(diǎn)D的坐標(biāo);
(2)求∠CAD的正弦值;
(3)設(shè)點(diǎn)P在線段DC的延長(zhǎng)線上,且∠PAO=∠CAD,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC,AC與BD相交于點(diǎn)O,AC=BC,點(diǎn)E在DC的延長(zhǎng)線上,∠BEC=∠ACB,已知BC=9,cos∠ABC=

(1)求證:BC2=CDBE;
(2)設(shè)AD=x,CE=y,求y與x之間的函數(shù)解析式,并寫(xiě)出定義域;
(3)如果△DBC∽△DEB,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+ 的圖象與y軸交于點(diǎn)A(0,4),與x軸交于點(diǎn)B,C,點(diǎn)C坐標(biāo)為(8,0),連AB,AC,點(diǎn)N在線段BC上運(yùn)動(dòng)(不與點(diǎn)B,C重合)過(guò)點(diǎn)N作NM∥AC,交AB于點(diǎn)M.

(1)判斷△ABC的形狀,并說(shuō)明理由;
(2)當(dāng)以點(diǎn)A,M,N為頂點(diǎn)的三角形與以點(diǎn)A,B,O為頂點(diǎn)的三角形相似時(shí),求點(diǎn)N的坐標(biāo);
(3)當(dāng)△AMN面積等于3時(shí),直接寫(xiě)出此時(shí)點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐際系xOy中,當(dāng)m,n滿足mn=k(k為常數(shù),且m>0,n>0)時(shí),就稱點(diǎn)(m,n)為“等積點(diǎn)”.
(1)若k=4,求函數(shù)y=x﹣4的圖象上滿足條件的,“等積點(diǎn)”坐標(biāo);
(2)若直線y=﹣x+b(b>0)與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,并且直線有且只有一個(gè)“等積點(diǎn)”,過(guò)點(diǎn)A與y軸平行的直線和過(guò)點(diǎn)B與x軸平行的直線交于點(diǎn)C,點(diǎn)E是直線AC上的“等積點(diǎn)”,點(diǎn)F是直線BC上的“等積點(diǎn)”,若△OEF的面積為k2+ k﹣ ,求EF的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案