【題目】小聰與同桌小明在課下學(xué)習(xí)中遇到這樣一道數(shù)學(xué)題:“如圖(1),在等邊三角形ABC中,點(diǎn)E在AB上,點(diǎn)D在CB的延長(zhǎng)線上,且ED=EC,試確定線段AE與DB的大小關(guān)系,并說(shuō)明理由”.小敏與小穎討論后,進(jìn)行了如下解答:
(1)取特殊情況,探索討論: 當(dāng)點(diǎn)E為AB的中點(diǎn)時(shí),如圖(2),確定線段AE與DB的大小關(guān)系,請(qǐng)你寫(xiě)出結(jié)論:AEDB(填“>”,“<”或“=”),并說(shuō)明理由.
(2)特例啟發(fā),解答題目: 解:題目中,AE與DB的大小關(guān)系是:AEDB(填“>”,“<”或“=”).理由如下:如圖(3),過(guò)點(diǎn)E作EF∥BC,交AC于點(diǎn)F.(請(qǐng)你將剩余的解答過(guò)程完成)
(3)拓展結(jié)論,設(shè)計(jì)新題: 在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且ED=EC,若△ABC的邊長(zhǎng)為1,AE=2,則CD的長(zhǎng)為 . (請(qǐng)你畫(huà)出圖形,并直接寫(xiě)出結(jié)果).

【答案】
(1)=
(2)=
(3)3或1
【解析】解:(1.)AE=DB, 理由如下:∵ED=EC,
∴∠EDC=∠ECD,
∵三角形ABC是等邊三角形,
∴∠ACB=∠ABC=60°,
∵點(diǎn)E為AB的中點(diǎn),
∴∠ECD= ∠ACB=30°,
∴∠EDC=30°,
∴∠D=∠DEB=30°,
∴DB=BE,
∵AE=BE,
∴AE=DB,
所以答案是:=;
(2.)如圖3,

∵△ABC為等邊三角形,且EF∥BC,
∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,∠FEC=∠ECB,
∴∠EFC=∠DBE=120°,
∵ED=EC,
∴∠D=∠ECB,∠D=∠FEC,
在△EFC與△DBE中,
,
∴△EFC≌△DBE(AAS),
∴EF=DB,
∵∠AEF=∠AFE=60°,
∴△AEF為等邊三角形,
∴AE=EF,AE=BD,
所以答案是:=;
(3.)如圖4,當(dāng)點(diǎn)E在AB的延長(zhǎng)線上時(shí),過(guò)點(diǎn)E作EF∥BC,交AC的延長(zhǎng)線于點(diǎn)F,

則∠DCE=∠CEF,∠DBE=∠AEF,∠ABC=∠AEF,∠ACB=∠AFE,
∵△ACB為等邊三角形,
∴∠ABC=∠ACB=60°,
∴∠AEF=∠AFE=60°,∠DBE=∠ABC=60°,
∴∠DBE=∠EFC,而ED=EC,
∴∠D=∠DCE,∠D=∠CEF,
在△BDE與△FEC中,

∴△BDE≌△FEC(AAS),
∴BD=EF,
∵△AEF為等邊三角形,
∴AE=EF=2,BD=EF=2,
∴CD=1+2=3;
如圖5,當(dāng)點(diǎn)E在BA的延長(zhǎng)線上時(shí),過(guò)點(diǎn)E作EF∥BC,交CA的延長(zhǎng)線于點(diǎn)F,
類似上述解法,同理可證:DB=EF=2,BC=1,
∴CD=2﹣1=1,
所以答案是:3或1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y3x2+2x3y軸的交點(diǎn)坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)一種零件,計(jì)劃在20天內(nèi)完成,若每天多生產(chǎn)4個(gè),則15天完成且還多生產(chǎn)10個(gè).設(shè)原計(jì)劃每天生產(chǎn)x個(gè),根據(jù)題意可列方程為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校在踐行“社會(huì)主義核心價(jià)值觀”演講比賽中,對(duì)名列前20名的選手的綜合分?jǐn)?shù)m進(jìn)行分組統(tǒng)計(jì),結(jié)果如表所示:

(1)求a的值;

(2)若用扇形圖來(lái)描述,求分?jǐn)?shù)在8≤m<9內(nèi)所對(duì)應(yīng)的扇形圖的圓心角大;

(3)將在第一組內(nèi)的兩名選手記為:A1、A2,在第四組內(nèi)的兩名選手記為:B1、B2,從第一組和第四組中隨機(jī)選取2名選手進(jìn)行調(diào)研座談,求第一組至少有1名選手被選中的概率(用樹(shù)狀圖或列表法列出所有可能結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】3.8963≈__________.(精確到0.01)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,B,C在一次函數(shù)y=﹣2x+m的圖象上,它們的橫坐標(biāo)依次為﹣1,1,2,分別過(guò)這些點(diǎn)作x軸與y軸的垂線,則圖中陰影部分的面積之和是( )

A.1
B.3
C.3(m﹣1)
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC=48°,三角形的外角∠DAC和∠ACF的平分線交于點(diǎn)E,則∠ABE=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一元二次方程2x23x10的二次項(xiàng)系數(shù)和一次項(xiàng)系數(shù)分別是( 。

A.2,3B.2,﹣3C.2,﹣1D.3,0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的平面直角坐標(biāo)系中,△OA1B1是邊長(zhǎng)為2的等邊三角形,作△B2A2B1與△OA1B1關(guān)于點(diǎn)B1成中心對(duì)稱,再作△B2A3B3與△B2A2B1關(guān)于點(diǎn)B2成中心對(duì)稱,如此作下去,則△B2nA2n+1B2n+1(n是正整數(shù))的頂點(diǎn)A2n+1的坐標(biāo)是(

A.(4n﹣1, B.(2n﹣1, C.(4n+1, D.(2n+1,

查看答案和解析>>

同步練習(xí)冊(cè)答案