【題目】按要求回答問(wèn)題:
(1)已知:△ABC是等腰三角形,其底邊是BC,點(diǎn)D在線段AB上,E是直線BC上一點(diǎn),且∠DEC=∠DCE,若∠A=60°(如圖①).求證:EB=AD;
(2)若將(1)中的“點(diǎn)D在線段AB上”改為“點(diǎn)D在線段AB的延長(zhǎng)線上”,其它條件不變(如圖②),(1)的結(jié)論是否成立,并說(shuō)明理由;
(3)若將(1)中的“若∠A=60°”改為“若∠A=90°”,其它條件不變,則 的值是多少?(直接寫(xiě)出結(jié)論,不要求寫(xiě)解答過(guò)程)
【答案】
(1)
證明:作DF∥BC交AC于F,如圖1所示:
則∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,
∵△ABC是等腰三角形,∠A=60°,
∴△ABC是等邊三角形,
∴∠ABC=∠ACB=60°,
∴∠DBE=120°,∠ADF=∠AFD=60°=∠A,
∴△ADF是等邊三角形,∠DFC=120°,
∴AD=DF,
∵∠DEC=∠DCE,
∴∠FDC=∠DEC,ED=CD,
在△DBE和△CFD中, ,
∴△DBE≌△CFD(AAS),
∴EB=DF,
∴EB=AD;
(2)
解:EB=AD成立;理由如下:作DF∥BC交AC的延長(zhǎng)線于F,如圖2所示:
同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,
又∵∠DBE=∠DFC=60°,
∴在△DBE和△CFD中, ,
∴△DBE≌△CFD(AAS),
∴EB=DF,
∴EB=AD
(3)
解: = ;理由如下: 作DF∥BC交AC于F,如圖3所示:
同(1)得:△DBE≌△CFD(AAS),
∴EB=DF,
∵△ABC是等腰直角三角形,DF∥BC,
∴△ADF是等腰直角三角形,
∴DF= AD,
∴ = ,
∴ = .
【解析】(1)作DF∥BC交AC于F,由平行線的性質(zhì)得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,證明△ABC是等邊三角形,得出∠ABC=∠ACB=60°,證出△ADF是等邊三角形,∠DFC=120°,得出AD=DF,由已知條件得出∠FDC=∠DEC,ED=CD,由AAS證明△DBE≌△CFD,得出EB=DF,即可得出結(jié)論;(2)作DF∥BC交AC的延長(zhǎng)線于F,同(1)證出△DBE≌△CFD,得出EB=DF,即可得出結(jié)論;(3)作DF∥BC交AC于F,同(1)得:△DBE≌△CFD,得出EB=DF,證出△ADF是等腰直角三角形,得出DF= AD,即可得出結(jié)果.本題是三角形綜合題目,考查了等邊三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)、等腰直角三角形的判定與性質(zhì)、平行線的性質(zhì)等知識(shí);本題綜合性強(qiáng),有一定難度,證明三角形全等是解決問(wèn)題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O是等腰Rt△ABC的外接圓,點(diǎn)D是 上一點(diǎn),BD交AC于點(diǎn)E,若BC=4,AD= ,則AE的長(zhǎng)是( 。
A.3
B.2
C.1
D.1.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過(guò)點(diǎn)A(﹣3,0),對(duì)稱(chēng)軸為直線x=﹣1,給出四個(gè)結(jié)論:
①c>0;
②若點(diǎn)B(﹣ ,y1)、C(﹣ ,y2)為函數(shù)圖象上的兩點(diǎn),則y1<y2;
③2a﹣b=0;
④ <0,
其中,正確結(jié)論的個(gè)數(shù)是( 。
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,∠B=30°,CE平分∠ACB交⊙O于E,交AB于點(diǎn)D,連接AE,則S△ADE:S△CDB的值等于( 。
A.1:
B.1:
C.1:2
D.2:3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l:y=x+2交x軸于點(diǎn)A,交y軸于點(diǎn)A1 , 點(diǎn)A2 , A3 , …在直線l上,點(diǎn)B1 , B2 , B3 , …在x軸的正半軸上,若△A1OB1 , △A2B1B2 , △A3B2B3 , …,依次均為等腰直角三角形,直角頂點(diǎn)都在x軸上,則第n個(gè)等腰直角三角形AnBn﹣1Bn頂點(diǎn)Bn的橫坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地的一座人行天橋如圖所示,天橋高為6米,坡面BC的坡度為1:1,為了方便行人推車(chē)過(guò)天橋,有關(guān)部門(mén)決定降低坡度,使新坡面的坡度為1: .
(1)求新坡面的坡角a;
(2)原天橋底部正前方8米處(PB的長(zhǎng))的文化墻PM是否需要拆橋?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電商銷(xiāo)售一款夏季時(shí)裝,進(jìn)價(jià)40元/件,售價(jià)110元/件,每天銷(xiāo)售20件,每銷(xiāo)售一件需繳納電商平臺(tái)推廣費(fèi)用a元(a>0).未來(lái)30天,這款時(shí)裝將開(kāi)展“每天降價(jià)1元”的夏令促銷(xiāo)活動(dòng),即從第1天起每天的單價(jià)均比前一天降1元.通過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),該時(shí)裝單價(jià)每降1元,每天銷(xiāo)量增加4件.在這30天內(nèi),要使每天繳納電商平臺(tái)推廣費(fèi)用后的利潤(rùn)隨天數(shù)t(t為正整數(shù))的增大而增大,a的取值范圍應(yīng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,將正方形紙片ABCD對(duì)折,使AB與CD重合,折痕為EF.如圖2,展開(kāi)后再折疊一次,使點(diǎn)C與點(diǎn)E重合,折痕為GH,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)M,EM交AB于N.若AD=2,則MN= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店以6元/千克的價(jià)格購(gòu)進(jìn)某種干果1140千克,并對(duì)其進(jìn)行篩選分成甲級(jí)干果與乙級(jí)干果后同時(shí)開(kāi)始銷(xiāo)售.這批干果銷(xiāo)售結(jié)束后,店主從銷(xiāo)售統(tǒng)計(jì)中發(fā)現(xiàn):甲級(jí)干果與乙級(jí)干果在銷(xiāo)售過(guò)程中每天都有銷(xiāo)量,且在同一天賣(mài)完;甲級(jí)干果從開(kāi)始銷(xiāo)售至銷(xiāo)售的第x天的總銷(xiāo)量y1(千克)與x的關(guān)系為y1=﹣x2+40x;乙級(jí)干果從開(kāi)始銷(xiāo)售至銷(xiāo)售的第t天的總銷(xiāo)量y2(千克)與t的關(guān)系為y2=at2+bt,且乙級(jí)干果的前三天的銷(xiāo)售量的情況見(jiàn)下表:
t | 1 | 2 | 3 |
y2 | 21 | 44 | 69 |
(1)求a、b的值;
(2)若甲級(jí)干果與乙級(jí)干果分別以8元/千克和6元/千克的零售價(jià)出售,則賣(mài)完這批干果獲得的毛利潤(rùn)是多少元?
(3)問(wèn)從第幾天起乙級(jí)干果每天的銷(xiāo)量比甲級(jí)干果每天的銷(xiāo)量至少多6千克? (說(shuō)明:毛利潤(rùn)=銷(xiāo)售總金額﹣進(jìn)貨總金額.這批干果進(jìn)貨至賣(mài)完的過(guò)程中的損耗忽略不計(jì))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com