【題目】小明想測量一棵樹的高度,他發(fā)現(xiàn)樹的影子恰好落在地面和一垛墻上,如圖,此時測得地面上的影長為8米,墻上的影長為4米.同一時刻,一根長為1米且垂直于地面放置的標桿在地面上的影長為2米,則樹的高度為________。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)興趣小組活動中,小明利用同弧所對的圓周角及圓心角的性質(zhì)探索了一些問題,下面請你和小明一起進入探索之旅.
(1)如圖1,△ABC中,∠A=30°,BC=2,則△ABC的外接圓的半徑為 ;
(2)如圖2,在矩形ABCD中,請利用以上操作所獲得的經(jīng)驗,在矩形ABCD內(nèi)部用直尺與圓規(guī)作出一點P,點P滿足;∠BPC=∠BEC,且PB=PC;(要求:用直尺與圓規(guī)作出點P,保留作圖痕跡.)
(3)如圖3,在平面直角坐標系的第一象限內(nèi)有一點B,坐標為(2,m),過點B作AB⊥y軸,BC⊥x軸,垂足分別為A、C,若點P在線段AB上滑動(點P可以與點A、B重合),發(fā)現(xiàn)使得∠OPC=45°的位置有兩個,則m的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】電動自行車已成為市民日常出行的首選工具。據(jù)某市品牌電動自行車經(jīng)銷商1至3月份統(tǒng)計,該品牌電動自行車1月份銷售150輛,3月銷售216輛.
(1)求該品牌電動車銷售量的月平均增長率;
(2)若該品牌電動自行車的進價為2300元,售價2800元,則該經(jīng)銷商1月至3月共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘海輪位于燈塔P的北偏東方向55°,距離燈塔為2海里的點A處.如果海輪沿正南方向航行到燈塔的正東位置,海輪航行的距離AB長是( )
A. 2海里 B. 2sin 55°海里
C. 2cos 55°海里 D. 2tan 55°海里
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新華商場銷售某種冰箱,每臺進貨價為2500元.市場調(diào)研表明:當銷售價為2900元時,平均每天能售出8臺;而當銷售價每降低50元時,平均每天就能多售出4臺.商場要想使這種冰箱的銷售利潤平均每天達到5000元,設(shè)每臺冰箱的定價為x元,則x滿足的關(guān)系式為( )
A. (x2500)(8+4×)=5000 B. (2900x2500)(8+4×)=5000
C. (x2500)(8+4×)=5000 D. (2900x)(8+4×)=5000
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)“綠水青山就是金山銀山”的號召,建設(shè)生態(tài)文明,某工廠自2019年1月開始限產(chǎn)并進行治污改造,其月利潤(萬元)與月份之間的變化如圖所示,治污完成前是反比例函數(shù)圖象的一部分,治污完成后是一次函數(shù)圖象的部分,下列選項錯誤的是( )
A.4月份的利潤為萬元
B.污改造完成后每月利潤比前一個月增加萬元
C.治污改造完成前后共有個月的利潤低于萬元
D.9月份該廠利潤達到萬元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,直線與雙曲線交于點,點.
(1)求反比例函數(shù)的表達式;
(2)根據(jù)圖象直接寫出不等式的解集 .
(3)將直線沿軸向下平移后,分別與軸,軸交于點,點,當四邊形為平行四邊形時,求直線的表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)投資112萬元引進一條農(nóng)產(chǎn)品加工生產(chǎn)線,若不計維修、保養(yǎng)等費用,預(yù)計投產(chǎn)后每年可創(chuàng)利33萬元,該生產(chǎn)線投產(chǎn)后從第一年到第x年的維修、保養(yǎng)費用累計為y萬元,且y=ax 2 +bx,若第一年的維修保養(yǎng)費用為2萬元,第二年為4萬元.
(1)求y關(guān)于x的解析式;
(2)設(shè)x年后企業(yè)純利潤為z萬元(純利潤=創(chuàng)利-維修、保養(yǎng)費用),投產(chǎn)后這個企業(yè)在第幾年就能收回投資?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AE是∠BAC的平分線,∠ABC的平分線 BM交AE于點M,點O在AB上,以點O為圓心,OB的長為半徑的圓經(jīng)過點M,交BC于點G,交 AB于點F.
(1)求證:AE為⊙O的切線.
(2)當BC=8,AC=12時,求⊙O的半徑.
(3)在(2)的條件下,求線段BG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com