【題目】如圖是二次函數(shù)y=ax2+bx+c=(a≠0)圖象的一部分,對(duì)稱軸是直線x=﹣2.關(guān)于下列結(jié)論:①ab<0;②b2﹣4ac>0;③9a﹣3b+c<0;④b﹣4a=0;⑤方程ax2+bx=0的兩個(gè)根為x1=0,x2=﹣4,其中正確的結(jié)論有( 。

A.①③④
B.②④⑤
C.①②⑤
D.②③⑤

【答案】B
【解析】解:∵拋物線開口向下,
∴a<0,
∵﹣=﹣2,
∴b=4a,ab>0,
∴①錯(cuò)誤,④正確,
∵拋物線與x軸交于﹣4,0處兩點(diǎn),
∴b2﹣4ac>0,方程ax2+bx=0的兩個(gè)根為x1=0,x2=﹣4,
∴②⑤正確,
∵當(dāng)a=﹣3時(shí)y>0,即9a﹣3b+c>0,
∴③錯(cuò)誤,
故正確的有②④⑤.
故選:B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識(shí)可以得到問題的答案,需要掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)并銷售某種產(chǎn)品,假設(shè)銷售量與產(chǎn)量相等,如圖中的折線ABD、線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本y1(單位:元)、銷售價(jià)y2(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.
(1)請(qǐng)解釋圖中點(diǎn)D的橫坐標(biāo)、縱坐標(biāo)的實(shí)際意義;
(2)求線段AB所表示的y1與x之間的函數(shù)表達(dá)式;
(3)當(dāng)該產(chǎn)品產(chǎn)量為多少時(shí),獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是⊙O外一點(diǎn),PA切⊙O于點(diǎn)A,AB是⊙O的直徑,連接OP,過點(diǎn)B作BC∥OP交⊙O于點(diǎn)C,連接AC交OP于點(diǎn)D.

(1)求證:PC是⊙O的切線;
(2)若PD=,AC=8,求圖中陰影部分的面積;
(3)在(2)的條件下,若點(diǎn)E是的中點(diǎn),連接CE,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D是邊AB上一點(diǎn),點(diǎn)E是邊AC上一點(diǎn),且DE∥BC,∠B=40°,∠AED=60°,則∠A的度數(shù)是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)A在第一象限,點(diǎn)C在第四象限,點(diǎn)B的坐標(biāo)為(60,0),OA=AB,∠OAB=90°,OC=50.點(diǎn)P是線段OB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)O、B重合),過點(diǎn)P與y軸平行的直線l交邊OA或邊AB于點(diǎn)Q,交邊OC或邊BC于點(diǎn)R,設(shè)點(diǎn)P橫坐標(biāo)為t,線段QR的長(zhǎng)度為m.已知t=40時(shí),直線l恰好經(jīng)過點(diǎn)C.

(1)求點(diǎn)A和點(diǎn)C的坐標(biāo);
(2)當(dāng)0<t<30時(shí),求m關(guān)于t的函數(shù)關(guān)系式;
(3)當(dāng)m=35時(shí),請(qǐng)直接寫出t的值;
(4)直線l上有一點(diǎn)M,當(dāng)∠PMB+∠POC=90°,且△PMB的周長(zhǎng)為60時(shí),請(qǐng)直接寫出滿足條件的點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,等腰△OBC的邊OB在x軸上,OB=CB,OB邊上的高CA與OC邊上的高BE相交于點(diǎn)D,連接OD,AB=,∠CBO=45°,在直線BE上求點(diǎn)M,使△BMC與△ODC相似,則點(diǎn)M的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3交x軸于A(﹣1,0)和B(5,0)兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)D是線段OB上一動(dòng)點(diǎn),連接CD,將線段CD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到線段DE,過點(diǎn)E作直線l⊥x軸于H,過點(diǎn)C作CF⊥l于F.

(1)求拋物線解析式;
(2)如圖2,當(dāng)點(diǎn)F恰好在拋物線上時(shí),求線段OD的長(zhǎng);
(3)在(2)的條件下:
①連接DF,求tan∠FDE的值;
②試探究在直線l上,是否存在點(diǎn)G,使∠EDG=45°?若存在,請(qǐng)直接寫出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊△ABC,D是邊BC的中點(diǎn),過D作DE∥AB于E,連接BE交AD于D1;過D1作D1E1∥AB于E1 , 連接BE1交AD于D2;過D2作D2E2∥AB于E2 , …,如此繼續(xù),若記SBDE為S1 , 記 為S2 , 記 為S3…,若SABC面積為Scm,則Sn=cm(用含n與S的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為a,在AB、BC、CD、DA邊上分別取點(diǎn)A1、B1、C1、D1 , 使AA1=BB1=CC1=DD1=a,在邊A1B1、B1C1、C1D1、D1A1上分別取點(diǎn)A2、B2、C2、D2 , 使A1A2=B1B2=C1C2=D1D2=A1B2 , ….依次規(guī)律繼續(xù)下去,則正方形AnBnCnDn的面積為 .

查看答案和解析>>

同步練習(xí)冊(cè)答案