【題目】已知:如圖,點 C 是線段 AB 上一點,且 5BC=2AB,D 是 AB 的中點,E 是CB 的中點,(1)若 DE=6,求 AB 的長;(2)求 AD:AC.
【答案】(1)20(2)
【解析】試題分析:(1)設(shè)CE=x.由中點定義,得到CE=EB=x, CB=2x,從而得到AB=5x,AC=3x.由D 是 AB 的中點,得到AD=DB=2.5x,得到DE=DB-EB=2.5x-x=1.5x=6,解得x=4,即可得到結(jié)論;
(2)由(1)可知:AD=2.5x,AC=3x,即可得到結(jié)論.
試題解析:解:(1)設(shè)CE=x.∵E 是CB 的中點,∴CE=EB=x,∴CB=2x,∴5×2x=2AB,∴AB=5x,∴AC=3x.∵D 是 AB 的中點,∴AD=DB=AB=2.5x,∴DE=DB-EB=2.5x-x=1.5x=6,∴x=4.
∴AB=5x=20;
(2)由(1)可知:AD=2.5x,AC=3x,∴AD:AC=2.5x:3x=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)市場蘋果的價格如下表:
購買蘋果 | 不超過20千克的部分 | 超過20千克但不超出40千克的部分 | 超出40千克的部分 |
每千克的價格 | 6元 | 5元 | 4元 |
(1)小明第一次購買蘋果10千克,需要付費多少元;
小明第二次購買蘋果千克(超過20千克但不超過40千克),需要付費多少元(用含的式子表示);
(2)小強分兩次共購買100千克,第二次購買的數(shù)量多于第一次購買的數(shù)量,且第一次購買的數(shù)量為千克,請問小強兩次購買蘋果共需要付費多少元?(用含的式子表示);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按要求完成問題:(1)如圖(一),它是由6個同樣大小的正方體擺成的幾何體.將正方體①移走后,新幾何體的三視圖與原幾何體的三視圖相比,哪一個視圖沒有發(fā)生改變?
(2)如圖(二),請你借助圖四虛線網(wǎng)格畫出該幾何體的俯視圖.
(3)如圖(三),它是由幾個小立方塊組成的俯視圖,小正方形上的數(shù)字表示該位置上的正方體的個數(shù),請你借助圖四虛線網(wǎng)格畫出該幾何體的主視圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù)a、b、c的平均數(shù)為5,方差為4,那么數(shù)據(jù)a+2、b+2、c+2的平均數(shù)和方差分別為( 。
A. 7,6 B. 7,4 C. 5,4 D. 以上都不對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點O在AB上,經(jīng)過點A的⊙O與BC相切于點D,與AC,AB分別相交于點E,F(xiàn),連接AD與EF相交于點G.
(1)求證:AD平分∠CAB;
(2)若OH⊥AD于點H,F(xiàn)H平分∠AFE,DG=1.
①試判斷DF與DH的數(shù)量關(guān)系,并說明理由;
②求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:在平行四邊形ABCD中,AB=2,AD=4,∠ABC=60°,E為AD上一點,連接CE,AF∥CE且交BC于點F.
(1)求證:四邊形AECF為平行四邊形.
(2)證明:△AFB≌△CE D.
(3)DE等于多少時,四邊形AECF為菱形.
(4)DE等于多少時,四邊形AECF為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2 ,對角線AC、BD相交于點O,E是OC的中點,連接BE,過點A作AM⊥BE于點M,交BD于點F,則FM的長為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中直線與x軸、y軸相交于A、B兩點,動點C在線段OA上,將線段CB繞著點C順時針旋轉(zhuǎn)得到CD,此時點D恰好落在直線AB上時,過點D作軸于點E.
求證:≌;
如圖2,將沿x軸正方向平移得,當(dāng)直線經(jīng)過點D時,求點D的坐標(biāo)及平移的距離;
若點P在y軸上,點Q在直線AB上是否存在以C、D、P、Q為頂點的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的Q點坐;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料閱讀:若一個整數(shù)能表示成a2+b2(a、b是正整數(shù))的形式,則稱這個數(shù)為“完美數(shù)”.例如:因為13=32+22,所以13是“完美數(shù)”;再如:因為a2+2ab+2b2=(a+b)2+b2(a、b是正整數(shù)),所以a2+2ab+2b2也是“完美數(shù)”.
(1)請你寫出一個大于20小于30的“完美數(shù)”,并判斷53是否為“完美數(shù)”;
(2)試判斷(x2+9y2)·(4y2+x2)(x、y是正整數(shù))是否為“完美數(shù)”,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com