【題目】一不透明的袋子中裝有2個白球和1個紅球,這些球除顏色不同外其余都相同,攪勻后,
(1)從中一次性摸出兩只球,用樹狀圖或列表表示其中一個是紅球另一個是白球的所有結(jié)果并求其概率.
(2)向袋子中放入若干個紅球(與原紅球相同),攪勻后,從中任取一個球是紅球的概率為,求放入紅球的個數(shù).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線上部分點的橫坐標(biāo),縱坐標(biāo)的對應(yīng)值如下表:
… | … | ||||||
… | … |
根據(jù)上表填空:
①拋物線與軸的交點坐標(biāo)是________和________;
②拋物線經(jīng)過點,________;
③在對稱軸右側(cè),隨增大而________;
試確定拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:我們學(xué)習(xí)等邊三角形時得到直角三角形的一個性質(zhì):在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半.即:如圖1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,則:AC=AB.
探究結(jié)論:小明同學(xué)對以上結(jié)論作了進一步研究.
(1)如圖1,連接AB邊上中線CE,由于CE=AB,易得結(jié)論:①△ACE為等邊三角形;②BE與CE之間的數(shù)量關(guān)系為 .
(2)如圖2,點D是邊CB上任意一點,連接AD,作等邊△ADE,且點E在∠ACB的內(nèi)部,連接BE.試探究線段BE與DE之間的數(shù)量關(guān)系,寫出你的猜想并加以證明.
(3)當(dāng)點D為邊CB延長線上任意一點時,在(2)條件的基礎(chǔ)上,線段BE與DE之間存在怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論 .
拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系xOy中,點A的坐標(biāo)為(﹣,1),點B是x軸正半軸上的一動點,以AB為邊作等邊△ABC,當(dāng)C點在第一象限內(nèi),且B(2,0)時,求C點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中有三個點A(-3,2)、B(-4,-3)、C(-1,-1)
(1)連接A、B、C三點,請在右圖中作出△ABC關(guān)于x軸對稱的圖形△A/B/C/,并直接寫出對稱點A/,B/,C/的坐標(biāo);
(2)用直尺在縱軸上找到一點P(0,n)滿足PB/+PA的值最小(在圖中標(biāo)明點P的位置,并寫出n的值在哪兩個連續(xù)整數(shù)之間).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C是線段AB上除點A、B外的任意一點,分別以AC、BC為邊在線段AB的同旁作等邊△ACD和等邊△BCE,連接AE交DC于M,連接BD交CE于N,連接MN.
(1)求證:AE=BD;
(2)請判斷△CMN的形狀,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,AB、AD上各有一點P、Q,△APQ的周長為2,求∠PCQ.
為了解決這個問題,我們在正方形外以BC和AB延長線為邊作△CBE,使得△CBE≌△CDQ(如圖)
(1)△CBE可以看成由△CDQ怎樣運動變化得到的?
(2)圖中PQ與PE的長度有什么關(guān)系?為什么?
(3)請用(2)的結(jié)論證明△PCQ≌△PCE;
(4)根據(jù)以上三個問題的啟發(fā),求∠PCQ的度數(shù).
(5)對于題目中的點Q,若Q恰好是AD的中點,求BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=6,點E為AD的中點,點P為線段AB上一個動點,連接EP,將△APE沿EP折疊得到△EPF,連接CE,CF,當(dāng)△ECF為直角三角形時,AP的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,E、F分別為線段AC上的兩個點,且DE⊥AC于點E,BF⊥AC于點F,若AB=CD,AE=CF,BD交AC于點M.
(1)試猜想DE與BF的關(guān)系,并證明你的結(jié)論;
(2)求證:MB=MD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD中,P是AD上一動點,連接BP,過點A作BP的垂線,垂足為F,交BD于點E,交CD于點G.
(1)當(dāng)AB=AD,且P是AD的中點時,求證:AG=BP;
(2)在(1)的條件下,求的值;
(3)類比探究:若AB=3AD,AD=2AP,的值為 .(直接填答案)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com