已知拋物線y=2x2+2x-12.
(1)求它與x軸的交點A,B的坐標(biāo)(點A在點B的左邊),與y軸的交點C的坐標(biāo);
(2)求拋物線的頂點D的坐標(biāo),并求出△ABD的面積.
解:(1)當(dāng)y=0時,2x
2+2x-12=0,
化簡為x
2+x-6=0,
即(x-2)(x+3)=0,
解得x
1=2,x
2=-3,
則A(2,0),B(-3,0),
當(dāng)x=0時,y=-12,
則C(0,-12).
(2)∵當(dāng)x=-
=-
時,
函數(shù)取得最小值,
y=2×(-
)
2+2×(-
)-12
=2×
-1-12
=-
,
則頂點坐標(biāo)為(-
,-
),
S
△ABD=
AB•
=
×(2+3)×
=
.
分析:(1)令x=0,求出函數(shù)與y軸的交點坐標(biāo),令y=0,求出和x軸的交點坐標(biāo);
(2)利用公式x=-
,求出函數(shù)對稱軸坐標(biāo),將其代入函數(shù)解析式,求出函數(shù)的頂點縱坐標(biāo),據(jù)此解答即可.
點評:本題考查了拋物線與x軸的交點、二次函數(shù)的性質(zhì),理解函數(shù)與方程的關(guān)系是解題的關(guān)鍵.