【題目】某服裝店購進(jìn)一批秋衣,價(jià)格為每件30元.物價(jià)部門規(guī)定其銷售單價(jià)不高于每件60元,經(jīng)市場調(diào)查發(fā)現(xiàn):日銷售量y(件)是銷售單價(jià)x(元)的一次函數(shù),且當(dāng)x=60時(shí),y=80;x=50時(shí),y=100.在銷售過程中,每天還要支付其他費(fèi)用450元.
(1)求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)求該服裝店銷售這批秋衣日獲利W(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(3)當(dāng)銷售單價(jià)為多少元時(shí),該服裝店日獲利最大?最大獲利是多少元?
【答案】(1) y=-2x+200(30≤x≤60) ;(2) W=-2(x-65)+2000;(3) 當(dāng)銷售單價(jià)為60元時(shí),該服裝店日獲利最大,為1950元.
【解析】
(1)根據(jù)y與x成一次函數(shù)解析式,設(shè)為y=kx+b,把x與y的兩對值代入求出k與b的值,即可確定出y與x的解析式,并求出x的范圍即可;
(2)根據(jù)利潤=單價(jià)×銷售量列出W關(guān)于x的二次函數(shù)解析式即可;
(3)利用二次函數(shù)的性質(zhì)求出W的最大值,以及此時(shí)x的值即可.
(1)設(shè)y=kx+b,根據(jù)題意得:
,
解得:k=-2,b=200,
∴y=-2x+200(30≤x≤60);
(2)W=(x-30)(-2x+200)-450=-2x2+260x-6450=-2(x-65)2+2000;
(3)W=-2(x-65)2+2000,
∵30≤x≤60,
∴x=60時(shí),w有最大值為1950元,
∴當(dāng)銷售單價(jià)為60元時(shí),該公司日獲利最大,為1950元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將直角三角板ABC繞直角頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)角度,得到△DCE,其中CE與AB交于點(diǎn)F,∠ABC=30°,連接BE,若△BEF為等腰三角形(即有兩內(nèi)角相等),則旋轉(zhuǎn)角的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ACB=∠ADB=90°,M、N 分別是 AB、CD 的中點(diǎn).
(1)求證:MN⊥CD;
(2)若 AB=50,CD=48,求 MN 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若等腰三角形的頂角為36°,則這個(gè)三角形就是黃金三角形。如圖,在△ABC中,BA=BC,D 在邊 CB 上,且 DB=DA=AC。
(1)如圖1,寫出圖中所有的黃金三角形,并證明;
(2)若 M為線段 BC上的點(diǎn),過 M作直線MH⊥AD于 H,分別交直線 AB,AC與點(diǎn)N,E,如圖 2,試寫出線段 BN、CE、CD之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下題及證明過程:已知:如圖,D是△ABC中BC邊上一點(diǎn),E是AD上一點(diǎn),EB=EC,∠ABE=∠ACE,求證:∠BAE=∠CAE.
證明:在△AEB和△AEC中,
∵EB=EC,∠ABE=∠ACE,AE=AE,
∴△AEB≌△AEC…第一步
∴∠BAE=∠CAE…第二步
問上面證明過程是否正確?若正確,請寫出每一步推理的依據(jù);若不正確,請指出錯在哪一步,并寫出你認(rèn)為正確的證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若點(diǎn)P從點(diǎn)A出發(fā),以每秒1cm的速度沿折線A﹣B﹣C﹣A運(yùn)動,設(shè)運(yùn)動時(shí)間為t(t>0)秒.
(1)AC= cm;
(2)若點(diǎn)P恰好在∠ABC的角平分線上,求此時(shí)t的值;
(3)在運(yùn)動過程中,當(dāng)t為何值時(shí),△ACP為等腰三角形(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場要建一個(gè)飼養(yǎng)場(矩形ABCD)兩面靠現(xiàn)有墻(AD位置的墻最大可用長度為27米,AB位置的墻最大可用長度為15米),另兩邊用木欄圍成,中間也用木欄隔開,分成兩個(gè)場地及一處通道,并在如圖所示的三處各留1米寬的門(不用木欄).建成后木欄總長45米.設(shè)飼養(yǎng)場(矩形ABCD)的一邊AB長為x米.
(1)飼養(yǎng)場另一邊BC=____米(用含x的代數(shù)式表示).
(2)若飼養(yǎng)場的面積為180平方米,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課間,小剛拿著老師的等腰直角三角板玩,一不小心掉到垂直地面的兩個(gè)木塊之間,如圖所示:
(1)求證:△ADC≌△CEB;
(2)若測得AD=15cm,BE=10cm,求兩個(gè)木塊之間的距離DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC 中,∠A=90°,現(xiàn)要在 AC 邊上確定一點(diǎn) D,使點(diǎn) D到 BA、BC 的距離相等.
(1)請你按照要求,在圖上確定出點(diǎn) D 的位置(尺規(guī)作圖,不寫作法,保留作圖痕跡);
(2)若 BC=10,AB=8,則 AC= ,AD= (直接寫出結(jié)果).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com