【題目】如圖,RtABC中,∠C90°,以斜邊AB為邊向外作正方形ABDE,且正方形對(duì)角線(xiàn)交于點(diǎn)O,連接OC,已知AC3OC6,則另一直角邊BC的長(zhǎng)為_____

【答案】9

【解析】

過(guò)OOFBC,過(guò)AAMOF,根據(jù)正方形的性質(zhì)得出∠AOB=90°OA=OB,求出∠BOF=OAM,根據(jù)AASAOM≌△BOF,推出AM=OFOM=FB,求出四邊形ACFM為矩形,推出AM=CF,AC=MF=3,得出等腰三角形三角形OCF,根據(jù)勾股定理求出CF=OF=6,求出BF,即可求出答案.

解:過(guò)OOFBCF,過(guò)AAMOFM,

∵∠ACB90°,

∴∠AMO=∠OFB90°,∠ACB=∠CFM=∠AMF90°,

∴四邊形ACFM是矩形,

AMCF,ACMF3,

∵四邊形ABDE為正方形,

∴∠AOB90°,OAOB,

∴∠AOM+BOF90°,

又∵∠AMO90°,

∴∠AOM+OAM90°,

∴∠BOF=∠OAM,

AOMOBF

∴△AOM≌△OBFAAS),

AMOFOMFB,

OFCF,

∵∠CFO90°

∴△CFO是等腰直角三角形,

OC6,由勾股定理得:CFOF6,

BFOMOFFM633,

BC6+39

故答案為:9

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰△ABC的直角邊AB=BC=10cm,點(diǎn)PQ分別從A、C兩點(diǎn)同時(shí)出發(fā),均以1cm/秒的相同速度作直線(xiàn)運(yùn)動(dòng),已知P沿射線(xiàn)AB運(yùn)動(dòng),Q沿邊BC的延長(zhǎng)線(xiàn)運(yùn)動(dòng),PQ與直線(xiàn)AC相交于點(diǎn)D.設(shè)P點(diǎn)運(yùn)動(dòng)時(shí)間為t,△PCQ的面積為S

1)求出S關(guān)于t的函數(shù)關(guān)系式;

2)當(dāng)點(diǎn)P運(yùn)動(dòng)幾秒時(shí),SPCQ=SABC?

3)作PE⊥AC于點(diǎn)E,當(dāng)點(diǎn)P、Q運(yùn)動(dòng)時(shí),線(xiàn)段DE的長(zhǎng)度是否改變?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,我們定義直線(xiàn)y=ax-a為拋物線(xiàn)y=ax2+bx+ca、bc為常數(shù),a≠0)的衍生直線(xiàn);有一個(gè)頂點(diǎn)在拋物線(xiàn)上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其衍生三角形.已知拋物線(xiàn)與其衍生直線(xiàn)交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C

1)填空:該拋物線(xiàn)的衍生直線(xiàn)的解析式為 ,點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為

2)如圖,點(diǎn)M為線(xiàn)段CB上一動(dòng)點(diǎn),將ACMAM所在直線(xiàn)為對(duì)稱(chēng)軸翻折,點(diǎn)C的對(duì)稱(chēng)點(diǎn)為N,若AMN為該拋物線(xiàn)的衍生三角形,求點(diǎn)N的坐標(biāo);

3)當(dāng)點(diǎn)E在拋物線(xiàn)的對(duì)稱(chēng)軸上運(yùn)動(dòng)時(shí),在該拋物線(xiàn)的衍生直線(xiàn)上,是否存在點(diǎn)F,使得以點(diǎn)A、CE、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)E、F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)經(jīng)過(guò)點(diǎn)A(﹣1,0),B3,0),C0,3)三點(diǎn).

1)求拋物線(xiàn)的解析式;

2)點(diǎn)M是線(xiàn)段BC上的點(diǎn)(不與BC重合),過(guò)MNMy軸交拋物線(xiàn)于N,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用含m的代數(shù)式表示MN的長(zhǎng);

3)在(2)的條件下,連接NBNC,是否存在點(diǎn)m,使△BNC的面積最大?若存在,求m的值和△BNC的面積;若不存在,說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y=﹣x2+bx+cx軸交于B,C兩點(diǎn),與y軸交于點(diǎn)A,直線(xiàn)y=﹣x+2經(jīng)過(guò)A,C兩點(diǎn),拋物線(xiàn)的對(duì)稱(chēng)軸與x軸交于點(diǎn)D,直線(xiàn)MN與對(duì)稱(chēng)軸交于點(diǎn)G,與拋物線(xiàn)交于M,N兩點(diǎn)(點(diǎn)N在對(duì)稱(chēng)軸右側(cè)),且MNx軸,MN7

1)求此拋物線(xiàn)的解析式.

2)求點(diǎn)N的坐標(biāo).

3)過(guò)點(diǎn)A的直線(xiàn)與拋物線(xiàn)交于點(diǎn)F,當(dāng)tanFAC時(shí),求點(diǎn)F的坐標(biāo).

4)過(guò)點(diǎn)D作直線(xiàn)AC的垂線(xiàn),交AC于點(diǎn)H,交y軸于點(diǎn)K,連接CN,△AHK沿射線(xiàn)AC以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng),移動(dòng)過(guò)程中△AHK與四邊形DGNC產(chǎn)生重疊,設(shè)重疊面積為S,移動(dòng)時(shí)間為t0t),請(qǐng)直接寫(xiě)出St的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)yx0)的圖象與直線(xiàn)yx交于點(diǎn)M,∠AMB90°,其兩邊分別與兩坐標(biāo)軸的正半軸交于點(diǎn)A、B,四邊形OAMB的面積為6

1)求k的值;

2)點(diǎn)P在(1)的反比例函數(shù)yx0)的圖象上,若點(diǎn)P的橫坐標(biāo)為3,在x軸上有一點(diǎn)D4,0),若在直線(xiàn)yx上有動(dòng)點(diǎn)C,構(gòu)成PDC,其面積為3,請(qǐng)寫(xiě)出C點(diǎn)的坐標(biāo);

3)若∠EPF90°,其兩邊分別為與x軸正半軸,直線(xiàn)yx交于點(diǎn)E、F,問(wèn)是否存在點(diǎn)E,使PEPF?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)今,越來(lái)越多的青少年在觀看影片《流浪地球》后,更加喜歡同名科幻小說(shuō),該小說(shuō)銷(xiāo)量也急劇上升.書(shū)店為滿(mǎn)足廣大顧客需求,訂購(gòu)該科幻小說(shuō)若干本,每本進(jìn)價(jià)為20元.根據(jù)以往經(jīng)驗(yàn):當(dāng)銷(xiāo)售單價(jià)是25元時(shí),每天的銷(xiāo)售量是250本;銷(xiāo)售單價(jià)每上漲1元,每天的銷(xiāo)售量就減少10本,書(shū)店要求每本書(shū)的利潤(rùn)不低于10元且不高于18元.

1)直接寫(xiě)出書(shū)店銷(xiāo)售該科幻小說(shuō)時(shí)每天的銷(xiāo)售量(本)與銷(xiāo)售單價(jià)(元)之間的函數(shù)關(guān)系式及自變量的取值范圍.

2)書(shū)店決定每銷(xiāo)售1本該科幻小說(shuō),就捐贈(zèng)元給困難職工,每天扣除捐贈(zèng)后可獲得最大利潤(rùn)為1960元,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市努力改善空氣質(zhì)量,近年來(lái)空氣質(zhì)量明顯好轉(zhuǎn),根據(jù)該市環(huán)境保護(hù)局公布的2010﹣2014這五年各年全年空氣質(zhì)量?jī)?yōu)良的天數(shù)如表所示,根據(jù)表中信息回答:

2010

2011

2012

2013

2014

234

233

245

247

256

(1)這五年的全年空氣質(zhì)量?jī)?yōu)良天數(shù)的中位數(shù)是________,平均數(shù)是________;

(2)這五年的全年空氣質(zhì)量?jī)?yōu)良天數(shù)與它前一年相比增加最多的是________年(填寫(xiě)年份);

(3)求這五年的全年空氣質(zhì)量?jī)?yōu)良天數(shù)的方差________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形紙片ABCD中,AB4BC8,將紙片沿EF折疊,使點(diǎn)C與點(diǎn)A重合,則下列結(jié)論錯(cuò)誤的是( )

A. AFAE B. ABE≌△AGF C. EF D. AFEF

查看答案和解析>>

同步練習(xí)冊(cè)答案